
1

“It’s Like Coding in the Dark”:
The need for learning cultures within coding teams

Catherine Hicks

Catharsis Consulting
2022

Suggested citation: Hicks, C. It’s Like Coding in the Dark: The need for learning cultures within coding teams
[White Paper], Catharsis Consulting. [link]

2

 EXECUTIVE SUMMARY

● This report presents data from a qualitative research project with software engineers and
developers. Twenty-five full-time code writers completed a “debugging” task and an in-depth
interview on their learning, problem-solving, and feedback experiences while onboarding to an
unfamiliar, collaborative codebase. This report applies a learning science lens to inform an
understanding of how to help code writers can thrive and collaborate.

● Themes from these interviews revealed an important learning tension: the work that code
writers needed to do to understand code often did not feel like what was rewarded in the
evaluation of their work. Code review often did not recognize code writers’ effort when it did
not result in lines of code. Despite stated ideals about knowledge sharing (e.g., documentation
and collaboration), this work was often contradicted with negative cues from colleagues about
what was “truly” valued. This tension was exacerbated by code writers’ fears about “not looking
like an engineer,” and their desire to perform to the expectations of their environments.

● Code writers navigated this by divesting from their own learning and from the “invisible” work of
knowledge transfer, leaving future collaborators without guidance in their own ramp-up to
unfamiliar code. As a result, code writers frequently expressed a poignant loneliness, even in
highly resourced teams.

● This maladaptive cycle can be understood as Learning Debt. Research from learning science
describes how environments that discourage sharing mistakes and valuing “in-draft” effort lead
to long-term costs in people’s motivation, wellbeing, and learning. Under this discouragement,
even formal processes which are ostensibly meant to maintain productivity and provide support
(e.g., code review, conversations with senior code authors) can reinforce these negative norms.

RECOMMENDATIONS

● Involve people in defining how their “success” is measured. Code writers across all career
levels had strong feelings and insights about meaningful work, and frequently spoke to specific
tasks they knew were valuable that their workplace missed.

● Encourage more developmental feedback, separate from performance evaluation. Critiquing
output is necessary in a production environment. However, code writers spoke to how their own
personal development and support for others’ development was rarely given space or credit in
review experiences. Leaders should make space for learning and development goals, and include
knowledge sharing work as an important output. These efforts should be separate from
performance evaluation. Collaborative learning requires psychological safety, and learners
cannot experience the freedom of openly sharing mistakes and “in-draft” learning while
defending their expertise and finished work.

● Give technical teams more time for collaboration and documentation, and make
documentation “count.” Simply put, documentation and other “mundane” tasks of knowledge
sharing were the first sacrifice to time pressure.

3

● Identify opportunities for celebrating and sharing collaborative support and examples of
active problem-solving. Many code writers described a strong desire to share their problem-
solving, but lack of opportunity. Junior code writers also noted the outsize impact that senior
teammates had on learning culture and the desire to “learn how to learn” from seeing real
problem-solving in action.

● Make the costs of learning debt visible. The costs of discouraging learning are borne most
immediately by individuals. These effects are almost certainly compounded and felt more
strongly by people with marginalized identities, who are systematically less supported at work.
Yet learning debt’s cost can be invisible in short-term, conventional productivity metrics,
particularly when these metrics fail to measure understanding and collaboration. For
researchers, leaders, and practitioners working on driving change in these environments, it is
important to think broadly about how to measure the health and long-term impact of a learning
culture.

Authorship: Catharsis (www.catharsisinsight.com) is an evidence science consultancy which
provides both strategic innovation consulting and applied behavioral research projects. We
frequently work on topics of social impact, learning, data science and equity, learning, hiring and
assessment, and health. Occasionally, we are able to conduct research studies on topics of interest,
with a goal toward contributing to behavioral science and human wellbeing in our fields of expertise.
In this report, we wanted to explore how a learning science lens could deepen our understanding of
code writers’ experiences.

4

INTRODUCTION

Collaborating on code is a difficult but necessary
precondition to the production and maintenance of
current technologies. Modern software engineering
requires not only code creation, but sharing and
iterating on this creation between multiple authors,
over different timepoints, and within multiple decision
contexts. This complexity has resulted in many classic
topics around managing the knowledge work of code:
tech debt, developer productivity, and unique needs in
tech management training are some examples that
merely scratch the surface of research on code
collaboration (e.g., Edwards, 2003; Kalliamvakou, et al.,
2017).

However, much of this conversation has focused on
technical systems and productivity output. As a
learning scientist who has worked with many
engineering teams, I became deeply interested in what
a learning lens could bring to questions of code
collaboration: what could we hear from how code
writers1 perceived their own learning and the
expectations of their environment around learning?
Why do so many code writers struggle to learn, even in
highly resourced environments which have many
formal processes for code review and many stated
ideals of life-long skill development and growth? And
can people involved in coding teams, from junior
members to senior leaders, use insights from learning
science to improve their experience in this work?

To explore these questions, I interviewed 25 full-time
code writers on their experiences working within
collaborative codebases. These interviews provide a
window into the lived experience of code writers’
collaboration, their reflections on barriers to it, and
their strategies for overcoming these barriers. In these
interviews, code writers share how they see their own
learning, their strategies and experiences of moving
from code observers to code creators, and where they
experienced barriers on this journey.

1 There are many debates about how to label different roles which produce code. The majority of our participants identified themselves as
“software engineers,” but several, who were junior in their careers or pursuing roles that they saw as hybrid (e.g., data science, QA), debated their
own belonging in this label. These debates were playful, wry, and insightful, and I wanted to reflect that. Therefore I refer to participants as “code
writers,” in order to center experience more than job title. Every participant had a core responsibility to produce collaborative code in their role.

Overall, participants’ lived experiences of
learning looked very different from their

workplaces’ stated ideals.

Regardless of seniority, participants spoke to
paradoxes in navigating an ebb and flow of scrutiny and
isolation during code writing. Nearly every participant
reflected that a key learning strategy for successful
work was creating an accurate mental model of an
unfamiliar codebase and exploratory programming, and
yet most perceived this activity as far less incentivized
and valued in their environment than it deserved. Even
in highly resourced environments–most of the code
writers worked at large high tech companies with
many explicit review structures–participants felt that
learning during code writing was lonely, difficult, and
undervalued.

Strikingly, code writers described a pressure to
perform coding output that created an implicit
discouragement of spending time on work that they
knew would support future learning and future
collaborators. One code writer described the process
in a quote that led to the title of this report:

Summarizing across these lived experiences, I use the
term Learning Debt to describe the consequences of
devaluing code writers’ learning.

“It’s like coding in the dark. Every once in a
while someone comes in to turn on the
lights and stare at you, like review, but then
you feel like you have to defend something.
But mostly I feel like I’m just sitting here
with all the lights off.”

5

Paralleling tech debt, learning debt is a cumulative
failure to support learning, created when code writers’
investment in long-term understanding is
disincentivized. For example, when code writers
experience code review scenarios as focused on
criticism and legitimacy tests, rather than effort and
development, code writers feel forced to defend their
reputations and output and disguise large portions of
their “true” work. Compounding the learning debt,
code writers make choices to keep reflective,
consumptive, and conceptual learning buried and
individual. Learning debt further accumulates in a
workplace as code writers feel discouraged from
sustainability efforts such as teaching, documentation,
or initiating helpful dialogue. As new collaborators
enter this cycle, they must once again “code in the
dark.”

It is important to note that the focus of these
interviews was not on workplaces that were described
as punitive, hostile, intolerable or adverse. Those
environments certainly exist. But the code writers
interviewed in this project spoke of valuing their work
and deep engagement within their roles. Even so,
learning debt was evident throughout their
experiences.

Despite this struggle to maintain room and time for
learning, code writers spoke to the value of learning
and their desire for learning moments to be more
capturable. Their solutions were grounded and simple:
rather than requests for complex tooling or
technological silver bullets, most code writers
expressed a poignant desire for more time to learn,
more time to talk to people, and more recognition of the
learning and reflective work that drove an accurate
understanding of collaborative code.

METHODS

Learning Science background to the interview script

People continuously seek out feedback from their
environments about the expectations others have for
their own learning (Schunk, 2012). In these interviews,
I wanted to learn more about how this behavior
happened in code work. Metacognition is a general
term for beliefs that people hold as they reason about

their social environment, their skills, and regulate their
own behavior (Veenman, 2006). In learning, many of
these metacognitive beliefs can be connected to
behavioral decision-making. An example of a
metacognitive belief that code writers might hold is
whether or not mistakes are proof of incompetence. In
a highly performance-oriented environment, people
avoid sharing in-draft work (e.g., Harackiewicz, Barron,
et al., 2000). With this in mind, I focused interviews on
participants’ stories of learning as well as what they felt
those experiences told them about learning.

In pilot testing the interview script, I identified several
defining experiences where code writers might reveal
metacognitive beliefs about their learning
environments. These experiences were 1) making
mistakes or errors and repercussions for them 2)
seeking out help-seeking and disclosure 3) tools used
for self-regulation, storing knowledge, and making
forward progress through unfamiliar tasks. The
resulting interview script can be found in Appendix A.

Co-designing consent

Twenty-five code writers were recruited from direct
email to listservs, forums, and from research
participants who invited participation to their friends,
colleagues, and/or students via email. As this was not
intended to be a representative quantitative study, I
used social recruiting as a starting place, but did not
know any of these participants personally. All
participants worked at a workplace with headquarters
in the California Bay Area, but six lived in other
locations in the United States and worked remotely.

In line with Catharsis’ research principle of co-
designing with participants (Greenhalgh, Hinton, et al.,
2019), I led each participant through a consent dialogue
along with a more conventional consent form. In this
dialogue, I explored how participants wanted their
stories presented. This enabled me to not only ensure
informed consent for these discussions about personal
and emotional work experience, but also ask how
participants preferred any identity information to be
presented. While participants represented a diverse
range of identities, after this discussion, some
participants preferred their specific nationality, ethnic,
and/or racial identification to not be shared in the
context of research on their work. This category is
therefore excluded for all.

6

When possible, it is also a Catharsis analysis principle
to present combinatorial characteristics to better
reflect intersectional experiences (e.g., “10 female
participants, of which 3 were junior career”; see Cole,
2009). However, for greater confidentiality in this
study, participants preferred characteristics presented
separately. Table 1 describes participants according to
these co-designed preferences. Most participants
were full-time employees of their workplaces, but four
participants were PhD students completing a full-time
internship at a large tech company.

Table 1: Participant Characteristics

Research session preparation

Code writers completed hour-long sessions which
contained both an active work session and a semi-
structured interview. Most sessions were conducted
remotely over video call, but five were conducted in
person. Qualitative interviews are social and dynamic,
and participants’ reflections may sometimes bring up
sensitive experiences they did not expect to disclose.
In order to respect this, I also concluded each
interview with an additional consent dialogue, checking
with participants on their comfort with sharing topics
that had surfaced during the conversation. Participants
were allowed to withdraw any content from the study
at any time, with no questions asked; all code writers
felt comfortable re-assenting to participation after the
interview was finished and full interviews were
included in the analysis.

In preparation for the session, code writers were asked
to focus on the process of moving from an unfamiliar
observer to familiar contributor in a collaborative
codebase. I asked code writers to focus on three
touchpoints:

1) Moments they were onboarding to (or “ramping
up in”) an unfamiliar codebase.

2) Moments they began to write their own
decision into a collaborative codebase, and
moments they solved a “bug” within a
collaborative codebase.

3) How code review and any other feedback points
were experienced in this problem-solving
process, and how they shared back their problem-
solving with collaborators.

These tasks are not mutually exclusive. For instance,
many code writers described working on discrete
debugging tasks as a means of continuing their overall
“ramp-up” into understanding a codebase. Code
writers would often review shared code feedback
histories as they explored. It was common that code
writers would discuss switching between tasks, or
refer to a previous code review from a different area of
code to aid in understanding a new collaborative
codebase. However, in pilot testing the interview
script, I found that these three topics were helpful
focus points that elicited conversation about the
learning journey of encountering unfamiliar code.

Structure of research sessions

Sessions had two components: an active coding task to
establish trust and prompt context, and a semi-
structured interview to dive deeper into participants’
experiences.

1. First, participants explored an active work session.
Prior to the session, participants were prompted to
bring a real code task which they could focus on during
our time. Active work sessions ranged from 15-30
minutes, determined by the participant’s comfort and
when they felt “done.” Where needed, participants also
obtained the permission of their supervisor for this
conversation. For the sake of confidentiality of their
work product, I did not observe any lines of code.
Instead, I used a “talk aloud” methodology (Landauer,
1988), and participants narrated their decisions and
explorations during the example task. The majority of
participants worked on a debugging task, while several
brought in a task such as exploring a particular
function, or researching the history of connections
within several layers of dependence in their codebase.

7

Like all measurement, interviews are not a perfect
reproduction of experience and interview answers
should also be understood as an operationalization. In
pilot tests of the interview script, several code writers
reflected that it was difficult to answer questions in the
abstract about problem-solving, and that translating
“code thinking” into words could feel like a specific skill
on its own. This echoes work from Human-Computer
Interaction research on how even important
collaboration during code search sometimes builds on
nonverbal social communication (e.g., D'Angelo &
Begel, 2017).

One challenge inherent to any study on these topics is
that people do not always find it easy to accurately
self-assess their own behaviors and beliefs about
learning. Focusing on “in-draft” work rather than a final
product or output has been found to prompt deeper
consideration of the problem-solving at hand, versus
focusing on surface issues or “aesthetics” (e.g., Hicks et
al., 2016). Similarly, “process feedback” which considers
how work is done, not just what work is done, prompts
deeper behavioral impact and motivation, along with
diminished threat (London & Smither, 2002). I hoped
that by accompanying participants in a real task, the
interviews would benefit from drawing attention to
their process.

I was also aware that the interviews asked participants
to reflect on uncomfortable experiences, such as
moments they felt confused, distracted, or
disheartened in code writing. Another research
principle of participant co-design at Catharsis is to
consider psychological safety a core requirement of
our methodologies. Therefore the aim of this active

work session task was twofold: to help elicit more
accurate conversations by grounding code writers in
their own active problem-solving, and to create an
atmosphere of reflection and psychological safety as
code writers shared work behaviors that were seen as
imperfect, incomplete, or messy, and as a researcher, I
could model a respectful appreciation and
unconditional observation of their work.

And indeed, as participants narrated their work during
the active work sessions, the tone of their
conversations moved from initial “ideal” descriptions
of protocols around code work, towards more tangible,
authentic, “how it really works” commentary (see
Appendix B for further comment on this).

2. Second, participants completed a semi-structured
interview. I used a core bank of questions to probe into
code writers’ experiences with learning while working
with collaborative code, while allowing code writers to
elaborate and expand on any of the threads that were
brought up either by the questions, or by the active
work session (Appendix A).

Themes from all session content were identified using
open coding (e.g., Maguire & Delahunt, 2017;
Vaismoradi, Turunen, & Bondas, 2013). While not every
theme came up in every interview, in order to be
counted as a theme, a topic had to be mentioned by at
least 23/25 participants. As with many qualitative
interview projects, this approach was inductive and
exploratory, and is meant to serve as a reflection point
for noticing common patterns in what are inherently
individual experiences (Gibbs, 2007; Braun, & Clarke,
2012).

8

FINDINGS

High Level Summary. This section describes the overall themes from these interviews. Themes were synthesized into
three main groups, mapped onto the journey participants described in chronological stages of increasing code
understanding: 1) active learning, 2) code review, and 3) environment reinforcement. In each stage, learning challenges
emerged not only from individuals, but from the constraints of their workplaces.

1. In the first stage, code writers described the ramp
up to an unfamiliar codebase as a process of detecting
an implicit mental model of the decisions that built that
codebase. Code writers did this with active learning.
Active learning is experiential, a process of learning by
testing conceptual mental models with tangible
examples (Prince, 2004). One shared description from
nearly all participants was moving from iteratively
“breaking” small pieces of code or small logical
connections before one was ready to enter
“production.” Active learning was more nonlinear than
eventual code output. It required back-and-forth
detective work to find clues for previous coders’
decisions, such as identifying critical “anchor points” in
code from which to explore.

Code writers narrated active experiments such as
producing errors, misconceptions, and “toy” versions
of code that were continuously tweaked and iterated.
The majority of this exploration did not yield code
creation that would be shared with others. Instead,
code writers focused on scaffolding their
understanding until they felt confident they could
contribute. Code writers described on this stage as
necessary, highly valuable, and laden with productive
mistakes. However, this work was also described as
largely unshared, invisible to others, and subject by
anxiety about time pressure.

2. In code review, a significant theme that emerged
was fear of disclosure. Code writers emphasized that
the feedback in these formal processes frequently did
not match their active learning of their previous stage.
Instead, many review moments put social pressure on
code writers to justify their output, rather than have a
developmental conversation about learning.
Awareness of time constraint further forced code
writers into choosing between trade-offs between
performing a “productive” identity, versus accurately
discussing the work behind the code. Sharing the
decision-making behind the code was disincentivized,

and the productive lived mistakes of active learning
were rendered invisible.

3. As a consequence of this tension, code writers
returned to their code creation environment to
experience reinforcing cues which underlined the
divide between solitary learning and their strategic,
outward-focused performance. Against a background
of persistent time pressure and organizational barriers
like asynchronous communication, code writers spoke
of reducing documentation, reducing the capture of
decisional context, and remaining vigilant to social
cues in inconsistent or hostile social communication
and feedback.

9

Not all descriptions of learning during code work
were negative. Where positive, code writers described
a rich mental and emotional benefit from shared
understanding, knowledge scaffolding, and valued
their own skills at creating these structures as well as
sharing them with others (e.g., in pair programming).

However, most conversations underlined even these
descriptions with the awareness that this productive
learning activity was fundamentally covert compared
to “final product” code output.

Deeper Dive. This section explores how research on both individual learning beliefs and learning environments can
help to contextualize code writers’ experiences. Cues from code writers’ environments reinforced metacognitive
beliefs that emphasize performance over process. Subthemes are explored in this deeper dive and related to
supporting research on learning. For Stage 1, themes about the effort required to develop accurate mental models are
supported by research on obtaining tacit knowledge and transitioning toward expert problem-solving. For Stage 2,
themes around frustration with a code review focus on performance and output over developmental work and
knowledge work that is not reflected in “lines of code” are supported by research on essentialism and metacognitive
beliefs about brilliance. And for Stage 3, themes around inconsistent cues about learning and social cues are supported
by work on the impacts of maladaptive performance cultures and their discouragement of learning.

Stage 1. Active Learning: direct, tangible,
experimentation-driven learning, typically
done alone.

Active learning was defined by code writers as
acquiring conceptual understanding, and then testing
their conceptual mental model with tangible
experimentations via a process of breaking things in
order to test assumptions. This activity was central to
developing an understanding of code. It was also highly
observational and reflective. Code writers emphasized
the need to observe, learn, and systematically test prior
to explicit code creation that would be visible to
others.

Learning environment lens: Active
learning, reflection, and “deep
processing” without code production
are necessary first steps for code
writers to feel confident in becoming
code creators.

The learning strategies described by participants as
the most efficient way to gain code familiarity were not
surprising. Our participants’ focus on and love for
active problem-solving echoed the large body of
research on the cognitive aspects of programming.
(e.g., Détienne, 2001). For example, programmers use

just-in-time searches and “interleave” code writing
and web search as a strategy for both learning and
remembering (e.g., Brandt, et al., 2009).

Similarly, from learning science, research on the tacit
knowledge needed for domain expertise argues that
many of the highly skilled problem-solving patterns
experts go through are neither documented nor
explicit in a work environment (e.g. Fritz, 2014; Ryan &
O’Connor, 2009). And active learning, such as using
specific worked use cases, role plays of solutions, and
just-in-time learning, can be a beneficial way to learn
in comparison to rote lecture or passive material
reading (e.g., Freeman, 2014; Yang, 2014).

This is also a productive strategy for collaborating in
code. Expert programmers “work out” solutions,
pushing forward their knowledge with both top-down
and bottom-up explorations (Rist, 1991). Juniors in
these environments therefore face the continual
challenge of interpreting artifacts of previous work,
often without access to the invisible decision-making
processes that created them. This active exploration of
how code reflects conceptual decision-making in both
obvious and subtle ways was described by our
participants as a fundamental detective work of code
collaboration.

10

Figure 1. Illustration of mentions per theme, as in the table of top themes. Within each of the three main
categories (Active Learning, Code Review, and Environment), subthemes are shown alongside selected

quotes that fell under the subtheme. Additional quotes can be found in Appendix B.

11

Stage 2. Code Review: reputation and
disclosure bring up conflicts between the
guidelines and the real social experience.

While code writers spoke of numerous types of
feedback from their peers and teams, including pull
requests, internal messaging, and internal q&a
processes, code review emerged as the key focusing
point for our participants’ discussion of gaining
feedback on their learning.

Code review was mentioned over 39 distinct times, and
was a central moment when tensions arose between
learning goals and the performance expectations of
code writers’ environments. Code writers spoke to
many layers of decision-making, not simply about the
explicit choices in the code, but on their meta-choices
about what was appropriate to bring to the attention
of another code writer.

Most of these mentions were critiques. This is not
necessarily surprising, as the interview questions
directly prompted participants to reflect on moments
when they felt they needed more help. This emphasis
should not be taken as an overall evaluation of the
efficacy of code review itself or an investigation of its
rubrics. Yet it was clear to our participants that formal
processes for getting feedback on code faced significant
implementation challenges.

Code writers doubted the stated goals of review. Many
had the sense that they needed to care more about
“sounding like” or fitting the expectations of a
reviewer, than accurately discussing their work.

Most code writers agreed that code review
processes did not include reward or
recognition for their active learning work
and development of code understanding.

Because of this, the majority of interviewees surfaced
frequent experiences of feeling bereft of both
meaningful feedback and a way to communicate those
insights to others who might be helped by them.

Transitioning from solitary knowledge work and
problem-solving to shared understanding was a
complex task. Code writers at all levels of experience

spoke with fondness, irritation, and eloquence of how
often this task fails. Where review experiences felt
positive, participants dwelled on gaining confidence in
the implicit mental models behind codebases, getting
feedback about the appropriateness of their effort, and
being able to pass this knowledge on to others.

Learning environment lens:
Reputational costs will supersede
“developmental” ideals; when code
reviews focus on performance over
learning, code writers feel pressured to
hide their actual learning.

One pattern underlying the themes in this stage was
that code writers described many conversations
ostensibly focused on feedback feeling like covert
‘tests’ of their legitimacy in engineering. Code writers
therefore could not experience these as opportunities
to freely discuss and learn from mistakes.

These experiences echo research on the negative
consequences of a performance-oriented culture. In
performance-oriented learning cultures, only “final”
outputs are acceptable to others, and performance of
external metrics such as grades is valued more than
mastery of the problem area (Harackiewicz, 2000).
Code writers’ worry around sounding like an engineer
or not getting in trouble–particularly expressed by
junior code writers–echoes research on metacognitive
beliefs that some people are “born” good at x, where x
might be math, code, or any other technical skill. Many
STEM fields fall into the trap of believing that skills
come from static, deterministic “brilliance,” including
engineering (e.g., Cimpian & Leslie, 2017; Meyer,
Cimpian & Leslie, 2015).

These metacognitive beliefs are not only maintained by
individuals, but also by environments. When formal
feedback processes in an environment discourage
sharing mistakes, work-in-progress, and difficulty, this
can reinforce a “fixed” mindset and the implicit belief
that learning activity should remain hidden. Under this
environment code writers struggle to share “real” work
in its totality, as it may create the impression that a
learner was not “born brilliant” (see Canning et al.,
2020).

Code writers’ learning persisted despite this challenge.
Where scrutiny, evaluation and identity threat was

12

covert, the learning strategies of code writers also
became covert. Code writers spoke of continuing to
invest time and effort in collaborative understanding
outside of untrusted formal processes. This learning
was buried in personal notes, informal peer-to-peer
support, and just-in-time conversations. When
choosing what to disclose in formal feedback
conversations, code writers emphasized the lack of
space for explanations and conceptual decision points.

The “invisible” byproduct of much of learning, mistakes
are a key component to advancing understanding.
When code review was positive, code writers spoke to
the inclusion and valuing of these “invisible” processes.
However, it was more frequent that formal processes
washed away the “background noise” of mistakes, and
enforced erasure of exploration. Code writers were
uncertain where this learning should “live” in their
collaborative workplace, and were left feeling that
much of their most insight-generating effort went
unshared.

Stage 3. Environment Reinforces Learning
Loss: tension between learning and
performance leads to loneliness.

Themes in the third stage were less tied to a specific
task, and more defined by code writers’ reflections on
the environmental barriers around them. Despite
working in highly resourced environments, code
writers went back to code work having experienced a
dearth of contextual information and communal
support. On the one hand, code writers were told that
they were meant to find support in large formal
processes for review, feedback, and implementation.
But on the other hand, their navigation of these
processes revealed profound context gaps in their
organizations.

This paradox crystallized the third constellation of
themes: code writers themselves learned to reinforce
the divide between valuable but secretive learning, and
collaborative knowledge sharing. They made choices to
cut their learning off from sharing, collaboration, and
knowledge storage, such as not creating
documentation, not commenting code, and not
reaching out to colleagues.

Code writers’ reflections on their environments
surfaced barriers that might sound familiar to any
worker at any large organization: time pressures,
asynchronous communication, and inconsistent access
to experts. Expressed in relationship to producing
code, however, these became further clues about the
implicit expectation that sharing the process was not a
smart strategy. Code writers made pragmatic, and wry
observations on how it was unstrategic to capture and
share their own conceptual learning about the
collaborative codebase, even when they knew it could
help others. In these choices, code writers themselves
recognized that they reinforced the learning norms of
an environment that had already put them “in the dark”
as learners.

Learning environment lens: learning
culture can be improved by rewarding
“invisible” learning work that helps
others, such as pair programming and
documentation. Conversely, learning
culture is damaged by social cues that
disparage this work.

Discouragement and devaluing of learning has real
consequences on both wellbeing and productivity.
Further research on performance-oriented
environments that discourage mistake and process
sharing has shown that these strategies can look highly
productive in the short-term, but ultimately result in
long-term stress on learners (Harackiewicz, et al.,
2008).

Focusing on output and productivity is a necessary
concern for any workplace. However, devaluing the
process that builds sustainable work is fundamentally
demotivating. Coupled with this devaluing,
metacognitive beliefs such as tying identity to
performance quality can lead to deeply negative
dynamics, such as thriving when one’s performance
matches the internal concept of a “performer,” but
crumpling when mistakes arise in the normal course of
learning, as mistakes are not believed to be part of
intelligence, performance, or achievement (Elliot &
Church, 1997).

Signals for what metacognitive beliefs are expected
can come from a day-to-day, working environment.
Code writers spoke of using infrastructure as a clue
about performance and learning expectations.

13

Code writers looked to artifacts left by other
code writers, like documentation, pull request
histories, and even the cadence of internal
messaging, in trying to interpret what were
acceptable ways to ask for help.

Code writers pointed out contradictions between
spoken ideals and observed behavior when questioning
who the artifacts of code collaboration were truly
supporting. And when this contradiction was felt by
code writers, the implicit message won out. Code
writers spoke of reading between the lines of missing
documentation and colleague irritation, and these
signals served as a “gut check” against the ways they
were told to ask for help. This experience was
particularly vivid for code writers who were junior in
their careers.

When to initiate shifts from solo work to group
collaborations also felt uncertain. Many of the quotes
on this topic emphasized the intensity of the fear that
engineers felt in being “out of pace” with other
workflows. For junior code writers in particular, this

pressure felt deeply negative. Under this context of
time pressure, it seems likely that code review was
weighted with outsize pressure as a place to obtain
help and subsequent discouragement when help was
not centered, as a result of the lack of other
opportunities for feedback.

Quite simply, the result of this conflict
between performance goals and learning goals
was loneliness.

Code writers reflected on moments they wished they
could have talked to someone, frictions in experiencing
“real” work versus performative work, and wishes to
share the value of their unvalued learning. This
loneliness was exacerbated by asynchronous
communication and decision making. Code writers
were often working backwards and across time and
distance to infer the mental models behind
collaborative code. For the code writers who were
remote, the uneven access to artifacts created around
code held even more power over their perceptions of
the environment.

14

A Learning Debt Cycle

Ramping up to new collaborative code, code writers
navigated a complex landscape of competing needs
while problem-solving. And despite formal structures
of feedback and review, many of these code writers
expressed not only a lack of resolution between these
competing needs, but outright hostility to their
learning needs.

This experience can be described as a Learning Debt
Cycle. Similar to “tech debt,” the common metaphor
used to refer to a wide range of accumulating
unresolved problems in software development (e.g.
Kruchten et al., 2012; Fairbanks, 2020), I use the term
Learning Debt to center the knowledge, personal
development, and expert problem-solving of code
writers, rather than the efficiency of production or
systems. Learning is a dynamic, long-term process
which knits together mistakes, reflection, and
observation, and these are activities frequently missed
or outright obscured by short-term, efficiency-
focused metrics.

For these code writers, learning was a
necessary foundational activity that was often
discouraged and rendered invisible.

The cycle of Learning Debt begins at a code writers’
earliest encounter with a collaborative codebase.
During this ramp up, participants took in cues about
organizational learning expectations from both the
code infrastructure itself (frequency of pull requests,
authorship paths, conflicts between “ideal” and “real”
solutions in code) and from social conversations and
social cues (e.g., availability of senior engineers for
questions, observations of how peers are treated). This
is commensurate with effects found in learning science
on the role of initiating encounters (e.g., syllabi
language in college classes) in setting normative
expectations which long-term effects on learners’
expectations (Canning et al., 2021).

As code writers moved from a code observation and
translation into code creation, they invested in
necessary active learning strategies (including
“breaking” code, “tracking” bugs, and building a mental
model) to initiate learning. During code review,
however, these strategies were often met with
conflicts from formal help-seeking processes, which
introduced contradiction, reputational pressure, and
hostility to learning. As code writers returned to their
working environments, these high-value feedback
moments reinforced a conflict between performance
and learning goals, and code writers were left to store
and share their conceptual learning outside of the
formal processes.

15

CONCLUSIONS & RECOMMENDATIONS

Collaborating on codebases is such a foundational
activity that it is tempting for engineering teams to
take this activity as a given. Teams might assume that
“of course” code is commented, documentation is
written, and knowledge is shared. But for the code
writers I interviewed, real life differed significantly
from the “best practices” described in engineering
research. When I asked whether the described learning
policies of their workplaces “worked as intended,”
many code writers laughed before answering. Lack of
documentation, frustration with invisible decisions,
and lack of mentorship for junior teammates were
frequently treated like rites of passage, perhaps even
the inevitable consequence of high quality code work.
As one code writer said: “Having to comment something
is a red flag.” As another said, learning about new code
“fails all the time.”

When code writers felt their work demanded learning
that was not recognized or rewarded, this meant that
code review and other feedback situations were filled
with psychological friction. Psychological friction is an
umbrella term for the cognitive and emotional burden
created when people feel the need to attend to
situational cues which signal a threat to their
belonging, reputation, or wellbeing. This friction
discourages learning. Reducing psychological friction
has improved learning experiences for early career
knowledge workers in STEM and Law (e.g., Quintanilla
et al., 2020; Murphy et al., 2007). To multiple
participants in this study, it felt like workplaces had
removed core pieces of learning. Code writers spoke
wistfully of what coding in a learning culture had felt
like during their education, or rare instances of pair
programming: “Just being able to build off of others’
experiences. I miss it a lot.”

When there are so many clear benefits, why is it so
difficult to maintain a learning culture? Social and
psychological cultures at work are created by
reinforced behaviors. In this study, code writers’
“failures” to document or transfer knowledge were not
driven by laziness or lack of care. Rather, code writers
spoke to environmental pressures which pushed them
to navigate complex tensions between performance
and learning goals. And when making learning visible
does not feel safe, performance culture wins.

This challenge is not unique to collaborating on code.
Despite a wide-ranging research literature on the
importance of learning culture, giving feedback on
processes over output, and developmental
collaboration, schools and workplaces often fail to
invest in developmental feedback, or recognize that
maladaptive performance beliefs are emphasized in
their environments (e.g., Marsick & Watkins, 2003; Bian
et al., 2018). This is a gap on both sides, as social science
also frequently fails to provide enough concrete
information for workplaces to learn from, even for
research on applied interventions (e.g., Premachandra
& Lewis Jr, 2020).

But academic research is not the only place to learn
about learning. I interviewed people about learning in
their real jobs, because I wanted to amplify their
specific expertise and insight. The code writers in
these interviews had many ideas about how to improve
learning with code; they simply also felt discouraged
and unsupported in translating this to their
environment. Code writers had keen insight into their
own productive, active problem-solving, but felt their
environments, teams, and leaders failed to adequately
understand this productivity.

Multiple areas of engineering research echo these
experiences, and can be drawn on to improve them.
Engineering environments struggle to understand,
capture, and measure productivity, but thinking
broadly about multivariate data, developer satisfaction,
wellbeing and stress reduction can move us closer to
good measures (e.g., Forsgren, Storey et al., 2021).
Parallels can even be drawn from areas such as
resilience engineering, which has made metaphorically
resonant arguments that systems must expect and be
designed for non-ideal (aka, “real world”) conditions
(e.g. Madni & Jackson, 2009). Human beings are not
machines, but like machines, they experience cycles of
stress and negative impacts from their environments,
and functional systems need to build for sustainability
and protection.

It is important to note once again that the focus of this
study was not on deeply harmful or hostile
experiences. All of participants spoke of being happy
where they worked. Nevertheless their learning debt

16

was real, cumulative, and striking. In some ways, it was
surprising that even code writers in highly resourced
environments struggled to find basic systems of social
and knowledge work support. Focusing on code writers
as learners brought to the surface the ways in which
their environments failed to treat learning as a
meaningful activity in code collaboration, and failed to
design for it.

RECOMMENDATIONS

● Involve people in defining how their “success” is measured. Code writers across all career
levels had strong feelings and insights about meaningful work, and frequently spoke to specific
tasks they knew were valuable that their workplace missed.

● Encourage more developmental feedback, separate from performance evaluation. Critiquing
output is necessary in a production environment. However, code writers spoke to how their own
personal development and support for others’ development was rarely given space or credit in
review experiences. Leaders should make space for learning and development goals, and include
knowledge sharing work as an important output. These efforts should be separate from
performance evaluation. Collaborative learning requires psychological safety, and learners
cannot experience the freedom of openly sharing mistakes and “in-draft” learning while
defending their expertise and finished work.

● Give technical teams more time for collaboration and documentation, and make
documentation “count.” Simply put, documentation and other “mundane” tasks of knowledge
sharing were the first sacrifice to time pressure.

● Identify opportunities for celebrating and sharing collaborative support and examples of
active problem-solving. Many code writers described a strong desire to share their problem-
solving, but lack of opportunity. Junior code writers also noted the outsize impact that senior
teammates had on learning culture and the desire to “learn how to learn” from seeing real
problem-solving in action.

● Make the costs of learning debt visible. The costs of discouraging learning are borne most
immediately by individuals. These effects are almost certainly compounded and felt more
strongly by people with marginalized identities, who are systematically less supported at work.
Yet learning debt’s cost can be invisible in short-term, conventional productivity metrics,
particularly when these metrics fail to measure understanding and collaboration. For
researchers, leaders, and practitioners working on driving change in these environments, it is
important to think broadly about how to measure the health and long-term impact of a learning
culture.

17

REFERENCES

Bian, L., Leslie, S. J., Murphy, M. C., & Cimpian, A. (2018). Messages
about brilliance undermine women's interest in educational and
professional opportunities. Journal of Experimental Social
Psychology, 76, 404-420. https://doi.org/10.1016/j.jesp.2017.11.006.

Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper, P. M.
Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA
handbook of research methods in psychology, Vol. 2. Research
designs: Quantitative, qualitative, neuropsychological, and
biological (pp. 57–71). American Psychological Association.
https://doi.org/10.1037/13620-004

Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., & Klemmer, S. R.
(2009, April). Two studies of opportunistic programming:
interleaving web foraging, learning, and writing code. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (pp. 1589-1598).
https://doi.org/10.1145/1518701.1518944

Canning, E. A., Murphy, M. C., Emerson, K. T., Chatman, J. A., Dweck,
C. S., & Kray, L. J. (2020). Cultures of genius at work: Organizational
mindsets predict cultural norms, trust, and commitment.
Personality and Social Psychology Bulletin, 46(4), 626-642.

Canning, E. A., Ozier, E., Williams, H. E., AlRasheed, R., & Murphy, M.
C. (2021). Professors Who Signal a Fixed Mindset About Ability
Undermine Women’s Performance in STEM. Social Psychological
and Personality Science, 19485506211030398.

Cimpian, A., & Leslie, S. J. (2017). The brilliance trap. Scientific
American, 317(3), 60-65.

Cole, E. R. (2009). Intersectionality and research in psychology.
American psychologist, 64(3), 170.

D'Angelo, S., & Begel, A. (2017, May). Improving communication
between pair programmers using shared gaze awareness. In
Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (pp. 6245-6290).

Détienne, F. (2001). Software Design–Cognitive Aspects. Springer
Science & Business Media.

Edwards, J. S. (2003). Managing software engineers and their
knowledge. In Managing software engineering knowledge (pp. 5-27).
Springer, Berlin, Heidelberg.

Elliot, A. J., & Church, M. A. (1997). A hierarchical model of approach
and avoidance achievement motivation. Journal of personality and
social psychology, 72(1), 218.

Fairbanks, G. (2020). Ur-technical debt. IEEE Software, 37(4), 95-98.

Forsgren, N., Storey, M. A., Maddila, C., Zimmermann, T., Houck, B.,
& Butler, J. (2021). The SPACE of Developer Productivity: There's
more to it than you think. Queue, 19(1), 20-48.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor,
N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases

student performance in science, engineering, and mathematics.
Proceedings of the national academy of sciences, 111(23), 8410-8415.

Fritz, T., Murphy, G. C., Murphy-Hill, E., Ou, J., & Hill, E. (2014).
Degree-of-knowledge: Modeling a developer's knowledge of code.
ACM Transactions on Software Engineering and Methodology
(TOSEM), 23(2), 1-42

Gibbs, G. R. (2007). Thematic coding and categorizing. Analyzing
qualitative data, 703, 38-56.
https://dx.doi.org/10.4135/9781526441867.n4

Greenhalgh, T., Hinton, L., Finlay, T., Macfarlane, A., Fahy, N., Clyde,
B., & Chant, A. (2019). Frameworks for supporting patient and public
involvement in research: Systematic review and co‐design pilot.
Health Expectations, 22(4), 785-801.

Harackiewicz, J. M., Barron, K. E., Tauer, J. M., Carter, S. M., & Elliot,
A. J. (2000). Short-term and long-term consequences of
achievement goals: Predicting interest and performance over time.
Journal of educational psychology, 92(2), 316.

Harackiewicz, J. M., Durik, A. M., Barron, K. E., Linnenbrink-Garcia,
L., & Tauer, J. M. (2008). The role of achievement goals in the
development of interest: Reciprocal relations between achievement
goals, interest, and performance. Journal of educational
psychology, 100(1), 105.

Hicks, C. M., Pandey, V., Fraser, C. A., & Klemmer, S. (2016, May).
Framing feedback: Choosing review environment features that
support high quality peer assessment. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems (pp. 458-
469).

Kalliamvakou, E., Bird, C., Zimmermann, T., Begel, A., DeLine, R., &
German, D. M. (2017). What makes a great manager of software
engineers?. IEEE Transactions on Software Engineering, 45(1), 87-
106.

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical debt: From
metaphor to theory and practice. IEEE Software, 29(6), 18-21.

Landauer, T. K. (1988). Research methods in human-computer
interaction. In Handbook of human-computer interaction (pp. 905-
928). North-Holland.

Madni, A. M., & Jackson, S. (2009). Towards a conceptual framework
for resilience engineering. IEEE Systems Journal, 3(2), 181-191.

Maguire, M., & Delahunt, B. (2017). Doing a thematic analysis: A
practical, step-by-step guide for learning and teaching scholars. All
Ireland Journal of Higher Education, 9(3).

Marsick, V. J., & Watkins, K. E. (2003). Demonstrating the value of an
organization's learning culture: the dimensions of the learning
organization questionnaire. Advances in Developing Human
Resources, 5(2), 132-151.
https://doi.org/10.1177/1523422303005002002

18

Meyer, M., Cimpian, A., & Leslie, S. J. (2015). Women are
underrepresented in fields where success is believed to require
brilliance. Frontiers in psychology, 6, 235.

Murphy, M. C., Steele, C. M., & Gross, J. J. (2007). Signaling threat:
How situational cues affect women in math, science, and
engineering settings. Psychological science, 18(10), 879-885.

Premachandra, B., & Lewis Jr, N. A. (2020). Do we report the
information that is necessary to give psychology away? A scoping
review of the psychological intervention literature 2000–2018.
Perspectives on Psychological Science, 1745691620974774.
https://doi.org/10.1177/1745691620974774

Prince, M. (2004). Does active learning work? A review of the
research. Journal of engineering education, 93(3), 223-231.
https://doi.org/10.1002/j.2168-9830.2004.tb00809.x

Quintanilla, V. D., Erman, S., Murphy, M. C., & Walton, G. (2020).
Evaluating Productive Mindset Interventions that Promote
Excellence on California’s Bar Exam.

Rist, R. S. (1991). Knowledge creation and retrieval in program
design: A comparison of novice and intermediate student
programmers. Human-Computer Interaction, 6(1), 1-46.

Ryan, S., & O’Connor, R. V. (2009). Development of a team measure
for tacit knowledge in software development teams. Journal of

Systems and Software, 82(2), 229-240.
https://doi.org/10.1016/j.jss.2008.05.037

Schunk, D. H. (2012). Learning theories. an educational perspective
sixth edition. Pearson.

Singer, Eleanor, and Mick P. Couper. 2017. “Some Methodological
Uses of Responses to Open Questions and Other Verbatim
Comments in Quantitative Surveys.” Methods, Data, Analyses 11 (2).
https://doi.org/10.12758/MDA.2017.01.

Suter, W. N. 2012. “Chapter 12: Qualitative Data, Analysis, and
Design.” In Introduction to Educational Research: A Critical Thinking
Approach, 2nd ed., 342–86. Thousand Oaks, CA: SAGE Publications,
Inc. https://doi.org/10.4135/9781483384443.n12.

Vaismoradi, M., Turunen, H., & Bondas, T. (2013). Content analysis
and thematic analysis: Implications for conducting a qualitative
descriptive study. Nursing & health sciences, 15(3), 398-405.

Veenman, M. V., Van Hout-Wolters, B. H., & Afflerbach, P. (2006).
Metacognition and learning: Conceptual and methodological
considerations. Metacognition and learning, 1(1), 3-14.

Yang, F. P., Jiau, H. C., & Ssu, K. F. (2014). Beyond plagiarism: an
active learning method to analyze causes behind code-similarity.
Computers & Education, 70, 161-172.

19

APPENDIX A: Initial Interview Script

Interviews were semi-structured interviews: this means that while the initiating questions were used for all
interviewees, participants were allowed to share tangents, observations, and delve into new topics as they arose
naturally in the conversation. All interviewees were asked the initiating questions in this script as given below, but
were asked follow-up questions and probed to elaborate (e.g., “tell me more about [what you just said]”/ “tell me
how often you think [strategy] works”) in ways that were specific to their responses.

[after “debugging” observation]: What did this task make you think about? What do you think was most valuable for
your learning?
Probe: any comments that came up during “debugging” observation task

Give me a quick background on how you interact with or write code, in your day-to-day.

How many days out of the week do you write code
Are you collaborating with others
Are you reviewing others’ code or managing collaborations

1) Probe: Moments they had “ramped up” or onboarded to an unfamiliar codebase
2) Probe: Moments they began to write their own decision into a collaborative codebase, and moments they
solved a “bug” within a collaborative codebase
 3) Probe: How code review and any other feedback points were experienced in this problem-solving process

Tell me about how you review collaborative code.

Tell me about how you learn here
 Navigate between different files
 Prototype and make decisions
 Come back to code that you wrote in the past and understand it

Tell me about onboarding into someone else’s code, or a codebase that is new to you. How do you learn here?
 What does onboarding or ramping-up look like
 When do you begin to contribute
 How do you ask for help or feedback

Tell me about how you get feedback on code and collaborate on code.
 Tell me the general process at your organization for joint projects
 Tell me more about code review
 Tell me more about pair programming
 Are there types of feedback you don’t get
 Are there moments you wish you could have gotten feedback

Tell me about where you feel like you get credit, or recognition for effort.

Are there things about collaborating on code writing that you wish were easier?

If you can think of one, tell me about a time that it was difficult to ramp somebody up into code that you had written /
(if inapplicable) tell me about a time it was difficult for you to ramp up into somebody else’s code
 Tell me about how you share context that’s important for code that you’ve written
 Tell me about how you think other people on your team share context, or decisions about code they’ve written

20

Tell me how you share your decisions about code with other people
 Tell me about how your organization does knowledge sharing
 Tell me what you think is important for you to do in your job outside of writing code
 Tell me about how often you do documentation/or not

21

APPENDIX B: Selected Respondent Quotes

Stage 1. Active Learning

“If you’re like ‘how does it work,’ you want to understand it in general, just use the actual app in contexts -- see
the solution, play with that thing, as you play with that thing you’ll get more of a sense of why the code is the way
it is.”

“Spend 90% of my time talking and communicating and asking questions and 10% of my time writing code, that’s
probably right. Asking questions, really listening to a teammate, understanding where he may be coming from. [...]
especially as a junior dev, a big pain point is asking questions and having the time to get the people I need in a
room to learn the problems.”

“When people make errors [even just] typos that prevent code from running, it’s really important to see those
being made. It is important in terms of making mistakes and being able to correct them, which is a large
proportion of the learning process [….] The [mentors] I find the most helpful are the ones that have a stronger
preference towards live coding, for the reasons I described, for seeing mistakes happen.[....] You often don’t get
this.”

“[people tell you] ‘here’s one thing to look for,’ but not necessarily what it looks like when the failure occurs. You’ll
hear [senior teammates] saying “oh this typically happens,” but they don’t go into it, so the warning will totally fly
over your head because you don’t have a place to store it. [...] Direct interaction with code makes it feel real,
tangible, easy to remember.”

“You go through a process of elimination, let’s hold these things constant, and then it becomes a trial and error
thing, and that trial and error becomes exhausting….[laughs]. You don’t have a mental model anymore, [you] break
the mental model to learn.”

“I’d have this pattern of search where I go down a level and say ‘wait that’s not the right place to go’ and bounce
back up; I had to know how to do it wrong in order to do it right.”

Stage 2. Code Review

“Do we get to talk about all that learning that happens before our code? No [laughs], no. I mean I think it would be
seen as a waste of time.”

“Code review is trial by fire–it sounds extreme. But you [just] get two million comments back to do it differently.
You don’t get to talk about why you did it that way. We’re not necessarily good at the culture. [...] But I’m very
much a tinkerer. I need to make mistakes.”

22

“Inside of [my] team it’s good because we all code review each other’s work and we do it well. We get buy-in
before making major changes. But with other teams, other teams end up touching our codebase [...] they bring in
models that are comfortable to them, and that becomes mismatch. Decisions get complicated. Our [process for
feedback] doesn’t address those model conflicts. Usually the mismatch is better resolved [talking]. So really
[laughs] maybe we avoid code review when there are real problems.”

“I am watching in code review, like, ‘ok, that’s what they want me to sound like.’ Of course I learn but they don’t
really explain… [it’s] just like being checked up on, so I watch to not get in trouble.”

“People don’t want to talk about your choices. Or what you learned, no. People just joke about how much they
don’t want to talk. You don’t want to be annoying, you don’t want to be like ‘that guy.’ Code review isn’t a place to
talk about everything around the code, there isn’t a place to talk.”

“[for getting help or feedback] We basically have code review. It’s the only time for feedback. You know, it’s the
only time you get to actually talk to somebody. And then it’s not really the reasons you did things. It’s all just, it’s
very transactional. Making sure you don’t look like an idiot is important.”

“I guess the thing to think about is that we were always on deadline. We have to do this thing in 48 hours, but
those [code review] conversations [...] the scope just expands. Exponentially. It got kind of frustrating. When
someone else gets involved [in code review], there’s a burden and pitfalls. [...] So we end up trying to not involve
each other and avoid decisions coming up in code review.”

“We review big code changes but…The main people who are talking are typically the most senior...they throw out
terms, say high level things. I see these two [junior team members] who don’t say anything but you know when
you can look at someone and they’re in silence and they’re not looking engaged? Yeah. I wish it could be like,
maybe all of us who are actually figuring it out could get together and talk, but no it’s like, some senior person
reviewing and telling them things are wrong. But they don’t really see why you thought you had to do it that way.”

“But if I was new and trying to work out what this [code] did - I think code in general only makes sense once you
understand the context of the code - If I was onboarding someone I’d be demoing it. You have to prepare them:
there’s a lot of code here and a lot of it’s good and a lot of it’s bad but you want to prepare them. You want to say
here are the hot spots where we’re putting effort into, and also the areas that we’re putting effort into might be
messy because of that. People get messed up, people get bad feedback, hate reviews because they don’t
understand their effort isn’t in the right place. But sometimes I’m like, no one told them.”

“There are situations where folks are modifying code that I’ve written because something else isn’t working, so
they’re trying to play around […]. I want to help. I would love to get there earlier in the process but [the way it
works now] a month goes by before I see them. Maybe I get pulled into a code review, but that’s not really when I
would’ve helped.”

23

“My background is not traditional for computer science. It is tough. The hardest parts of the workflow…it’s all
tough. I can be fairly productive once I figure out the codebase, but figuring it out, it takes me a long time to get
there and it feels like you’re not, you know you’re working really hard but no one sees it.”

Stage 3. Environment Reinforces Learning Loss

“I guess documentation is the way I’d ‘help’ other people but they treat it like a time sink. I end up feeling like I
have too much to say so I don’t say anything? Like other engineers think you’re not really supposed to say too
much and clutter up anywhere so I think if I figure out something I think is neat like I solve it, it just stays in my
head like maybe I write it down for myself. So it doesn’t help anyone.”

“If you work with a big company they’ll expect you to have documentation - [but] that’s not the same
documentation as the internal engineer-to-engineer documentation that’s needed. I waste a lot of time doing the
documentation they want to see. I know it’s not really teaching anyone.”

“Ideally we were supposed to comment code….reality? Less than 10% of our code was actually well commented.”

“We have no documentation of our code, it’s very primitive. We haven’t been doing too many notes in code unless
it’s a ‘to do.’ [...] People are better at compromising in person, [but] that gets lost. I have had the same
conversation so many times.”

“I met [the original authors of code I was working on] in the beginning of the project but that was it […] I guess I
was supposed to submit a pull request if I wanted to but I thought they would be like, ‘who are you’ […] so my
experience was trying to sift through all this stuff on my own. I didn’t want to bother people. It’s a lot of stuff like
that, like I’m checking for the names of people [in github, in Slack]... [people] I met for one hour in the beginning
of the project and I’m seeing they don’t actually talk to each other so I shouldn’t [reach out to them]. But I don’t
really want to bother them again. I don’t know if I’m going slower than they’d expect. So there’s a big difference
between what people say and what they want you to do, yeah.”

“As a more junior dev […] I want to become more consistent with the person who’s more senior to me, I want to
figure out why they’ve developed those practices. But they never have time for us. You are doing this figuring it
out from what you can see [in code]”

“We tried [to advocate for more pair programming] and got a lot of pushback.”

“The best way for someone to really understand your code is to sit down with them, go through examples [....]
looking at this code, trying to figure out at what point was this project talking to what other project [...] reaching
out to people in Slack [...] building an understanding of how these pieces fit together. That’s the best. [points
emphatically] the best way. That barely ever happens. Because the developers probably aren’t there. People don’t

24

have time to talk to you. So then you go to documentation systems. [...] It’s strange but, documentation can tell
you how people don’t have time.”

“At my old company I was the one who provided the context, I enjoy and have a bit of skill at keeping the whole
web in my head and saying oh, that connects here, that connects here. [...] I’m good at that. But I don’t get to do it
here. I kind of realized the career cost to acting that way. Because we really intensive, time intensive, I never get
to document all that knowledge.”

“It’s a badge of honor to work twenty hours of a day [...]. Go go go. I was the single point of knowledge for context
on this code. [...] Because we were really focused on churning and iterating I never got to document it. I know we
should’ve. If we hire more engineers we’re not going to be able to speed them up because there’s not this
repository of knowledge. One person can’t keep it all in their head.”

“[Onboarding into the collaborative codebase is] pretty draining and frustrating. Kind of full of despair. You have
to be very good at documenting your own progress. No one will do it [for you] or help. [...] I like exploration but
knowing there’s the time pressure, I personally don’t like actively asking questions.”

“Most of the time, there’s no descriptive message any time somebody changes things [in our shared code]. Or the
revision is too big. People aren’t good at adding reasoning or key insights because it takes time. And no, it isn’t
valued. So no you don’t get all the key insights.”

“The easiest, simplest way [to understand someone else’s code] is just to talk to them. That barely ever happens
because the developers aren’t there and people don’t have time to talk to you.”

“I am always trying to remind myself I love coding. I didn’t know it would feel like this to actually have this job.
Super alone.”

“The problem with us is that we are all working remotely, and we meet only [once in a while]. During those [few]
days ...we set all the tasks for the whole week, month. So you’re solving something that didn’t come up then, you’re
alone.”

“I’m horrible about commenting. Yeah, [even though] comments are really the only way to leave context for
yourself in the future. Time sinks aren’t a priority. [laughs] I guess learning is a time sink.”

“I miss writing code with other people. We are collaborative in other ways but not with code. [I miss] having other
people to bounce ideas off of, just being able to build off of others’ experiences. I miss it a lot.”

25

“[when I was a student] every day I was pair programming. It was hard [...] but you would literally learn from other
people’s experiences, it’s very productive. Or you’d get to really learn something from explaining to others. No pair
programming in the real world. No explaining.”

“We tend to believe code should be self-explanatory, everything that’s not self-explanatory, you add a comment.
Having to comment something is a red flag, an indication of messing up.”

“And right now [if] you look at where I left off [writing code], it does need a bunch more documentation that’s
giving me a sense of that’s the rationale and why I built it. [...] I can tell you if I was onboarding someone [into code
I wrote], I would try to find the next code task and kind of walk them through it. Well that’s ideal. And it’s not
there. No one cares if you do it so you know you just, you don’t benefit.”

“I think generally the conflict is [...] a lot of the work we need to be doing is behind the scenes, needing to make
things clearer [...] that can be kind of difficult because we have to do that, but we’re [told to prioritize] things we
can show physically. Things need to count from an outsider’s perspective.”

“We have pretty good team dynamics. Our project manager’s like, even if [working on code understanding is] not
something shiny, in the long-run that will pay off, so do it.”

“Even writing a comment is context switching for me, takes me out of the flow. But then you’re on the other side
and it’s all gold, It’s gold because -- all this stuff, all the comments and the people helping, it’s all to help you
understand the code. If you can figure out how to traverse [comments and documentation] really well, that can
help you in a big way. That’s really hard, it takes time, it takes discipline.”

“If I were just teaching someone? Showing people multiple examples [of why code works] – that would be great. I
would take that chance if I were teaching but I can’t here. If I’m just getting someone up to speed at work though, I
can’t. [Onboarding someone to collaborative code] fails all the time...someone just shows you a piece of code and
then you try it on your own and it’s totally mysterious.”

“From my standpoint I want more access to pair programming. Our company only uses it if you’re blocked. Feels
like you have to get into trouble to talk to people. But I’m actually really good at helping people when we pair
program.”

“The hardest part [of solving this bug] was the lack of documentation….then it’s like, you know, I get the sense no
one cares. Even if the framework is beautiful, no one cares about me now, trying to do stuff with it.”

26

APPENDIX C: Trust Building & psychological safety after the Active Work Session

An unexpected outcome of the active work sessions was that participants began to use noticeably more casual,
familiar, and warm language after the “bug solving” task. While this is not unexpected (as you spend time with
participants and develop a conversation, the conversation often becomes more comfortable), I believe it’s worth
calling out because it highlighted a specific theme of trust, and how trusting conversations elicit a different type of
disclosure. Therefore, in a follow-up qualitative analysis, I examined the immediate five minutes after the active
work session.

In ten of the interviews, participants initially referred to themselves by their official role description and title. After
the bug session, nine of these participants began to describe themselves with different, more idiosyncratic language.
Many of the participants began our interviews discussing explicit feedback structures and used language of “should”
and responsibility (e.g., “for code review you need to make sure you have learned the style”, “we’re supposed to
make sure we comment”...). After the active work sessions, in which the participants were able to narrate their live
problem-solving, much more humor emerged. Participants spoke more openly about “what works” and “what
doesn’t work” and their own learning constraints and desires while writing code (e.g., “even the best people can only
keep so much in their head,” “Ninety percent of what I realized I want to discuss is really more simple stuff than all
the stuff we have meetings about”).

This emergent experience prompted me to think about how interactions between methods can strengthen insight. I
believe that our interviews on learning in code writing were more authentic, engaged, and felt safer, because I had
held space with my participants in the debugging sessions without attempting to provide answers or judge the
quality of their code or their problem-solving.

