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 EXECUTIVE SUMMARY
 

● This report presents data from a qualitative research project with software engineers and 
developers. Twenty-five full-time code writers completed a “debugging” task and an in-depth 
interview on their learning, problem-solving, and feedback experiences while onboarding to an 
unfamiliar, collaborative codebase. This report applies a learning science lens to inform an 
understanding of how to help code writers can thrive and collaborate. 
 

● Themes from these interviews revealed an important learning tension: the work that code 
writers needed to do to understand code often did not feel like what was rewarded in the 
evaluation of their work. Code review often did not recognize code writers’ effort when it did 
not result in lines of code. Despite stated ideals about knowledge sharing (e.g., documentation 
and collaboration), this work was often contradicted with negative cues from colleagues about 
what was “truly” valued. This tension was exacerbated by code writers’ fears about “not looking 
like an engineer,” and their desire to perform to the expectations of their environments. 
 

● Code writers navigated this by divesting from their own learning and from the “invisible” work of 
knowledge transfer, leaving future collaborators without guidance in their own ramp-up to 
unfamiliar code. As a result, code writers frequently expressed a poignant loneliness, even in 
highly resourced teams.  
 

● This maladaptive cycle can be understood as Learning Debt. Research from learning science 
describes how environments that discourage sharing mistakes and valuing “in-draft” effort lead 
to long-term costs in people’s motivation, wellbeing, and learning. Under this discouragement, 
even formal processes which are ostensibly meant to maintain productivity and provide support 
(e.g., code review, conversations with senior code authors) can reinforce these negative norms. 

 
 
 
 

RECOMMENDATIONS 
 

● Involve people in defining how their “success” is measured. Code writers across all career 
levels had strong feelings and insights about meaningful work, and frequently spoke to specific 
tasks they knew were valuable that their workplace missed.  
 

● Encourage more developmental feedback, separate from performance evaluation. Critiquing 
output is necessary in a production environment. However, code writers spoke to how their own 
personal development and support for others’ development was rarely given space or credit in 
review experiences. Leaders should make space for learning and development goals, and include 
knowledge sharing work as an important output. These efforts should be separate from 
performance evaluation. Collaborative learning requires psychological safety, and learners 
cannot experience the freedom of openly sharing mistakes and “in-draft” learning while 
defending their expertise and finished work. 
 

● Give technical teams more time for collaboration and documentation, and make 
documentation “count.” Simply put, documentation and other “mundane” tasks of knowledge 
sharing were the first sacrifice to time pressure. 
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● Identify opportunities for celebrating and sharing collaborative support and examples of 
active problem-solving. Many code writers described a strong desire to share their problem-
solving, but lack of opportunity. Junior code writers also noted the outsize impact that senior 
teammates had on learning culture and the desire to “learn how to learn” from seeing real 
problem-solving in action.  
 

● Make the costs of learning debt visible. The costs of discouraging learning are borne most 
immediately by individuals. These effects are almost certainly compounded and felt more 
strongly by people with marginalized identities, who are systematically less supported at work. 
Yet learning debt’s cost can be invisible in short-term, conventional productivity metrics, 
particularly when these metrics fail to measure understanding and collaboration. For 
researchers, leaders, and practitioners working on driving change in these environments, it is 
important to think broadly about how to measure the health and long-term impact of a learning 
culture.  

 
 

 
Authorship: Catharsis (www.catharsisinsight.com) is an evidence science consultancy which 
provides both strategic innovation consulting and applied behavioral research projects. We 
frequently work on topics of social impact, learning, data science and equity, learning, hiring and 
assessment, and health. Occasionally, we are able to conduct research studies on topics of interest, 
with a goal toward contributing to behavioral science and human wellbeing in our fields of expertise. 
In this report, we wanted to explore how a learning science lens could deepen our understanding of 
code writers’ experiences. 
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INTRODUCTION 
 
Collaborating on code is a difficult but necessary 
precondition to the production and maintenance of 
current technologies. Modern software engineering 
requires not only code creation, but sharing and 
iterating on this creation between multiple authors, 
over different timepoints, and within multiple decision 
contexts. This complexity has resulted in many classic 
topics around managing the knowledge work of code: 
tech debt, developer productivity, and unique needs in 
tech management training are some examples that 
merely scratch the surface of research on code 
collaboration (e.g., Edwards, 2003; Kalliamvakou, et al., 
2017). 
 
However, much of this conversation has focused on 
technical systems and productivity output. As a 
learning scientist who has worked with many 
engineering teams, I became deeply interested in what 
a learning lens could bring to questions of code 
collaboration: what could we hear from how code 
writers1 perceived their own learning and the 
expectations of their environment around learning? 
Why do so many code writers struggle to learn, even in 
highly resourced environments which have many 
formal processes for code review and many stated 
ideals of life-long skill development and growth? And 
can people involved in coding teams, from junior 
members to senior leaders, use insights from learning 
science to improve their experience in this work? 
 
To explore these questions, I interviewed 25 full-time 
code writers on their experiences working within 
collaborative codebases. These interviews provide a 
window into the lived experience of code writers’ 
collaboration, their reflections on barriers to it, and 
their strategies for overcoming these barriers. In these 
interviews, code writers share how they see their own 
learning, their strategies and experiences of moving 
from code observers to code creators, and where they 
experienced barriers on this journey. 
 

 
1 There are many debates about how to label different roles which produce code. The majority of our participants identified themselves as 
“software engineers,” but several, who were junior in their careers or pursuing roles that they saw as hybrid (e.g., data science, QA), debated their 
own belonging in this label. These debates were playful, wry, and insightful, and I wanted to reflect that. Therefore I refer to participants as “code 
writers,” in order to center experience more than job title. Every participant had a core responsibility to produce collaborative code in their role. 
 

Overall, participants’ lived experiences of 
learning looked very different from their 

workplaces’ stated ideals.  
 
Regardless of seniority, participants spoke to 
paradoxes in navigating an ebb and flow of scrutiny and 
isolation during code writing. Nearly every participant 
reflected that a key learning strategy for successful 
work was creating an accurate mental model of an 
unfamiliar codebase and exploratory programming, and 
yet most perceived this activity as far less incentivized 
and valued in their environment than it deserved. Even 
in highly resourced environments–most of the code 
writers worked at large high tech companies with 
many explicit review structures–participants felt that 
learning during code writing was lonely, difficult, and 
undervalued.  
 
Strikingly, code writers described a pressure to 
perform coding output that created an implicit 
discouragement of spending time on work that they 
knew would support future learning and future 
collaborators. One code writer described the process 
in a quote that led to the title of this report:  

 
Summarizing across these lived experiences, I use the 
term Learning Debt to describe the consequences of 
devaluing code writers’ learning. 
  

“It’s like coding in the dark. Every once in a 
while someone comes in to turn on the 
lights and stare at you, like review, but then 
you feel like you have to defend something. 
But mostly I feel like I’m just sitting here 
with all the lights off.” 
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Paralleling tech debt, learning debt is a cumulative 
failure to support learning, created when code writers’ 
investment in long-term understanding is 
disincentivized. For example, when code writers 
experience code review scenarios as focused on 
criticism and legitimacy tests, rather than effort and 
development, code writers feel forced to defend their 
reputations and output and disguise large portions of 
their “true” work. Compounding the learning debt, 
code writers make choices to keep reflective, 
consumptive, and conceptual learning buried and 
individual. Learning debt further accumulates in a 
workplace as code writers feel discouraged from 
sustainability efforts such as teaching, documentation, 
or initiating helpful dialogue. As new collaborators 
enter this cycle, they must once again “code in the 
dark.”  
 
It is important to note that the focus of these 
interviews was not on workplaces that were described 
as punitive, hostile, intolerable or adverse. Those 
environments certainly exist. But the code writers 
interviewed in this project spoke of valuing their work 
and deep engagement within their roles. Even so, 
learning debt was evident throughout their 
experiences. 
 
Despite this struggle to maintain room and time for 
learning, code writers spoke to the value of learning 
and their desire for learning moments to be more 
capturable. Their solutions were grounded and simple: 
rather than requests for complex tooling or 
technological silver bullets, most code writers 
expressed a poignant desire for more time to learn, 
more time to talk to people, and more recognition of the 
learning and reflective work that drove an accurate 
understanding of collaborative code. 
 
 

METHODS  
 
Learning Science background to the interview script 
 
People continuously seek out feedback from their 
environments about the expectations others have for 
their own learning (Schunk, 2012). In these interviews, 
I wanted to learn more about how this behavior 
happened in code work. Metacognition is a general 
term for beliefs that people hold as they reason about 

their social environment, their skills, and regulate their 
own behavior (Veenman, 2006). In learning, many of 
these metacognitive beliefs can be connected to 
behavioral decision-making. An example of a 
metacognitive belief that code writers might hold is 
whether or not mistakes are proof of incompetence. In 
a highly performance-oriented environment, people 
avoid sharing in-draft work (e.g., Harackiewicz, Barron, 
et al., 2000). With this in mind, I focused interviews on 
participants’ stories of learning as well as what they felt 
those experiences told them about learning.  
 
In pilot testing the interview script, I identified several 
defining experiences where code writers might reveal 
metacognitive beliefs about their learning 
environments. These experiences were 1) making 
mistakes or errors and repercussions for them 2) 
seeking out help-seeking and disclosure 3) tools used 
for self-regulation, storing knowledge, and making 
forward progress through unfamiliar tasks. The 
resulting interview script can be found in Appendix A.  
 
Co-designing consent 

 
Twenty-five code writers were recruited from direct 
email to listservs, forums, and from research 
participants who invited participation to their friends, 
colleagues, and/or students via email. As this was not 
intended to be a representative quantitative study, I 
used social recruiting as a starting place, but did not 
know any of these participants personally. All 
participants worked at a workplace with headquarters 
in the California Bay Area, but six lived in other 
locations in the United States and worked remotely. 
 
In line with Catharsis’ research principle of co-
designing with participants (Greenhalgh, Hinton, et al., 
2019), I led each participant through a consent dialogue 
along with a more conventional consent form. In this 
dialogue, I explored how participants wanted their 
stories presented. This enabled me to not only ensure 
informed consent for these discussions about personal 
and emotional work experience, but also ask how 
participants preferred any identity information to be 
presented. While participants represented a diverse 
range of identities, after this discussion, some 
participants preferred their specific nationality, ethnic, 
and/or racial identification to not be shared in the 
context of research on their work. This category is 
therefore excluded for all.  
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When possible, it is also a Catharsis analysis principle 
to present combinatorial characteristics to better 
reflect intersectional experiences (e.g., “10 female 
participants, of which 3 were junior career”; see Cole, 
2009). However, for greater confidentiality in this 
study, participants preferred characteristics presented 
separately. Table 1 describes participants according to 
these co-designed preferences. Most participants 
were full-time employees of their workplaces, but four 
participants were PhD students completing a full-time 
internship at a large tech company.  
 
Table 1: Participant Characteristics  
 

 
 
Research session preparation  
 
Code writers completed hour-long sessions which 
contained both an active work session and a semi-
structured interview. Most sessions were conducted 
remotely over video call, but five were conducted in 
person. Qualitative interviews are social and dynamic, 
and participants’ reflections may sometimes bring up 
sensitive experiences they did not expect to disclose. 
In order to respect this, I also concluded each 
interview with an additional consent dialogue, checking 
with participants on their comfort with sharing topics 
that had surfaced during the conversation. Participants 
were allowed to withdraw any content from the study 
at any time, with no questions asked; all code writers 
felt comfortable re-assenting to participation after the 
interview was finished and full interviews were 
included in the analysis. 
 
In preparation for the session, code writers were asked 
to focus on the process of moving from an unfamiliar 
observer to familiar contributor in a collaborative 
codebase. I asked code writers to focus on three 
touchpoints:  
 

1) Moments they were onboarding to (or “ramping 
up in”) an unfamiliar codebase.  

 
2) Moments they began to write their own 
decision into a collaborative codebase, and 
moments they solved a “bug” within a 
collaborative codebase.  
 
3) How code review and any other feedback points 
were experienced in this problem-solving 
process, and how they shared back their problem-
solving with collaborators. 

 
These tasks are not mutually exclusive. For instance, 
many code writers described working on discrete 
debugging tasks as a means of continuing their overall 
“ramp-up” into understanding a codebase. Code 
writers would often review shared code feedback 
histories as they explored. It was common that code 
writers would discuss switching between tasks, or 
refer to a previous code review from a different area of 
code to aid in understanding a new collaborative 
codebase. However, in pilot testing the interview 
script, I found that these three topics were helpful 
focus points that elicited conversation about the 
learning journey of encountering unfamiliar code. 
 
Structure of research sessions 
  
Sessions had two components: an active coding task to 
establish trust and prompt context, and a semi-
structured interview to dive deeper into participants’ 
experiences. 
 
1. First, participants explored an active work session. 
Prior to the session, participants were prompted to 
bring a real code task which they could focus on during 
our time. Active work sessions ranged from 15-30 
minutes,  determined by the participant’s comfort and 
when they felt “done.” Where needed, participants also 
obtained the permission of their supervisor for this 
conversation. For the sake of confidentiality of their 
work product, I did not observe any lines of code. 
Instead, I used a “talk aloud” methodology (Landauer, 
1988), and participants narrated their decisions and 
explorations during the example task. The majority of 
participants worked on a debugging task, while several 
brought in a task such as exploring a particular 
function, or researching the history of connections 
within several layers of dependence in their codebase.  
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Like all measurement, interviews are not a perfect 
reproduction of experience and interview answers 
should also be understood as an operationalization. In 
pilot tests of the interview script, several code writers 
reflected that it was difficult to answer questions in the 
abstract about problem-solving, and that translating 
“code thinking” into words could feel like a specific skill 
on its own. This echoes work from Human-Computer 
Interaction research on how even important 
collaboration during code search sometimes builds on 
nonverbal social communication (e.g., D'Angelo & 
Begel, 2017).  
 
One challenge inherent to any study on these topics is 
that people do not always find it easy to accurately 
self-assess their own behaviors and beliefs about 
learning. Focusing on “in-draft” work rather than a final 
product or output has been found to prompt deeper 
consideration of the problem-solving at hand, versus 
focusing on surface issues or “aesthetics” (e.g., Hicks et 
al., 2016). Similarly, “process feedback” which considers 
how work is done, not just what work is done, prompts 
deeper behavioral impact and motivation, along with 
diminished threat (London & Smither, 2002). I hoped 
that by accompanying participants in a real task, the 
interviews would benefit from drawing attention to 
their process.  
 
I was also aware that the interviews asked participants 
to reflect on uncomfortable experiences, such as 
moments they felt confused, distracted, or 
disheartened in code writing. Another research 
principle of participant co-design at Catharsis is to 
consider psychological safety a core requirement of 
our methodologies. Therefore the aim of this active 

work session task was twofold: to help elicit more 
accurate conversations by grounding code writers in 
their own active problem-solving, and to create an 
atmosphere of reflection and psychological safety as 
code writers shared work behaviors that were seen as 
imperfect, incomplete, or messy, and as a researcher, I 
could model a respectful appreciation and 
unconditional observation of their work.   
 
And indeed, as participants narrated their work during 
the active work sessions, the tone of their 
conversations moved from initial “ideal” descriptions 
of protocols around code work, towards more tangible, 
authentic, “how it really works” commentary (see 
Appendix B for further comment on this).  
 
2. Second, participants completed a semi-structured 
interview. I used a core bank of questions to probe into 
code writers’ experiences with learning while working 
with collaborative code, while allowing code writers to 
elaborate and expand on any of the threads that were 
brought up either by the questions, or by the active 
work session (Appendix A).  
 
Themes from all session content were identified using 
open coding (e.g., Maguire & Delahunt, 2017; 
Vaismoradi, Turunen, & Bondas, 2013). While not every 
theme came up in every interview, in order to be 
counted as a theme, a topic had to be mentioned by at 
least 23/25 participants. As with many qualitative 
interview projects, this approach was inductive and 
exploratory, and is meant to serve as a reflection point 
for noticing common patterns in what are inherently 
individual experiences (Gibbs, 2007; Braun, & Clarke, 
2012). 
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FINDINGS
 
High Level Summary. This section describes the overall themes from these interviews. Themes were synthesized into 
three main groups, mapped onto the journey participants described in chronological stages of increasing code 
understanding: 1) active learning, 2) code review, and 3) environment reinforcement. In each stage, learning challenges 
emerged not only from individuals, but from the constraints of their workplaces. 
 
1. In the first stage, code writers described the ramp 
up to an unfamiliar codebase as a process of detecting 
an implicit mental model of the decisions that built that 
codebase. Code writers did this with active learning. 
Active learning is experiential, a process of learning by 
testing conceptual mental models with tangible 
examples (Prince, 2004). One shared description from 
nearly all participants was moving from iteratively 
“breaking” small pieces of code or small logical 
connections before one was ready to enter 
“production.” Active learning was more nonlinear than 
eventual code output. It required back-and-forth 
detective work to find clues for previous coders’ 
decisions, such as identifying critical “anchor points” in 
code from which to explore.  
 
Code writers narrated active experiments such as 
producing errors, misconceptions, and “toy” versions 
of code that were continuously tweaked and iterated. 
The majority of this exploration did not yield code 
creation that would be shared with others. Instead, 
code writers focused on scaffolding their 
understanding until they felt confident they could 
contribute. Code writers described on this stage as 
necessary, highly valuable, and laden with productive 
mistakes. However, this work was also described as 
largely unshared, invisible to others, and subject by 
anxiety about time pressure.  
 
2. In code review, a significant theme that emerged 
was fear of disclosure. Code writers emphasized that 
the feedback in these formal processes frequently did 
not match their active learning of their previous stage. 
Instead, many review moments put social pressure on 
code writers to justify their output, rather than have a 
developmental conversation about learning. 
Awareness of time constraint further forced code 
writers into choosing between trade-offs between 
performing a “productive” identity, versus accurately 
discussing the work behind the code. Sharing the 
decision-making behind the code was disincentivized, 

and the productive lived mistakes of active learning 
were rendered invisible. 
 
3. As a consequence of this tension, code writers 
returned to their code creation environment to 
experience reinforcing cues which underlined the 
divide between solitary learning and their strategic, 
outward-focused performance. Against a background 
of persistent time pressure and organizational barriers 
like asynchronous communication, code writers spoke 
of reducing documentation, reducing the capture of 
decisional context, and remaining vigilant to social 
cues in inconsistent or hostile social communication 
and feedback.  
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Not all descriptions of learning during code work 
were negative. Where positive, code writers described 
a rich mental and emotional benefit from shared 
understanding, knowledge scaffolding, and valued 
their own skills at creating these structures as well as 
sharing them with others (e.g., in pair programming). 

However, most conversations underlined even these 
descriptions with the awareness that this productive 
learning activity was fundamentally covert compared 
to “final product” code output.

 
 
 
Deeper Dive. This section explores how research on both individual learning beliefs and learning environments can 
help to contextualize code writers’ experiences. Cues from code writers’ environments reinforced metacognitive 
beliefs that emphasize performance over process. Subthemes are explored in this deeper dive and related to 
supporting research on learning. For Stage 1, themes about the effort required to develop accurate mental models are 
supported by research on obtaining tacit knowledge and transitioning toward expert problem-solving. For Stage 2, 
themes around frustration with a code review focus on performance and output over developmental work and 
knowledge work that is not reflected in “lines of code” are supported by research on essentialism and metacognitive 
beliefs about brilliance. And for Stage 3, themes around inconsistent cues about learning and social cues are supported 
by work on the impacts of maladaptive performance cultures and their discouragement of learning. 
 
 
Stage 1. Active Learning: direct, tangible, 
experimentation-driven learning, typically 
done alone. 
 
Active learning was defined by code writers as 
acquiring conceptual understanding, and then testing 
their conceptual mental model with tangible 
experimentations via a process of breaking things in 
order to test assumptions. This activity was central to 
developing an understanding of code. It was also highly 
observational and reflective. Code writers emphasized 
the need to observe, learn, and systematically test prior 
to explicit code creation that would be visible to 
others.  
 

Learning environment lens: Active 
learning, reflection, and “deep 
processing” without code production 
are necessary first steps for code 
writers to feel confident in becoming 
code creators. 

 
The learning strategies described by participants as 
the most efficient way to gain code familiarity were not 
surprising. Our participants’ focus on and love for 
active problem-solving echoed the large body of 
research on the cognitive aspects of programming. 
(e.g., Détienne, 2001). For example, programmers use  

just-in-time searches and “interleave” code writing 
and web search as a strategy for both learning and 
remembering (e.g., Brandt, et al., 2009).  
 
Similarly, from learning science, research on the tacit 
knowledge needed for domain expertise argues that 
many of the highly skilled problem-solving patterns 
experts go through are neither documented nor 
explicit in a work environment (e.g. Fritz, 2014; Ryan & 
O’Connor, 2009). And active learning, such as using 
specific worked use cases, role plays of solutions, and 
just-in-time learning, can be a beneficial way to learn 
in comparison to rote lecture or passive material 
reading (e.g., Freeman, 2014; Yang, 2014).   
 
This is also a productive strategy for collaborating in 
code. Expert programmers “work out” solutions, 
pushing forward their knowledge with both top-down 
and bottom-up explorations (Rist, 1991). Juniors in 
these environments therefore face the continual 
challenge of interpreting artifacts of previous work, 
often without access to the invisible decision-making 
processes that created them. This active exploration of 
how code reflects conceptual decision-making in both 
obvious and subtle ways was described by our 
participants as a fundamental detective work of code 
collaboration. 
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Figure 1. Illustration of mentions per theme, as in the table of top themes. Within each of the three main 
categories (Active Learning, Code Review, and Environment), subthemes are shown alongside selected 

quotes that fell under the subtheme. Additional quotes can be found in Appendix B. 
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Stage 2. Code Review: reputation and 
disclosure bring up conflicts between the 
guidelines and the real social experience. 
 
While code writers spoke of numerous types of 
feedback from their peers and teams, including pull 
requests, internal messaging, and internal q&a 
processes, code review emerged as the key focusing 
point for our participants’ discussion of gaining 
feedback on their learning. 
 
Code review was mentioned over 39 distinct times, and 
was a central moment when tensions arose between 
learning goals and the performance expectations of 
code writers’ environments. Code writers spoke to 
many layers of decision-making, not simply about the 
explicit choices in the code, but on their meta-choices 
about what was appropriate to bring to the attention 
of another code writer.  
 
Most of these mentions were critiques. This is not 
necessarily surprising, as the interview questions 
directly prompted participants to reflect on moments 
when they felt they needed more help. This emphasis 
should not be taken as an overall evaluation of the 
efficacy of code review itself or an investigation of its 
rubrics. Yet it was clear to our participants that formal 
processes for getting feedback on code faced significant 
implementation challenges.  
 
Code writers doubted the stated goals of review. Many 
had the sense that they needed to care more about 
“sounding like” or fitting the expectations of a 
reviewer, than accurately discussing their work.  
 
Most code writers agreed that code review 
processes did not include reward or 
recognition for their active learning work 
and development of code understanding.  
 
Because of this, the majority of interviewees surfaced 
frequent experiences of feeling bereft of both 
meaningful feedback and a way to communicate those 
insights to others who might be helped by them.  
 
Transitioning from solitary knowledge work and 
problem-solving to shared understanding was a 
complex task. Code writers at all levels of experience 

spoke with fondness, irritation, and eloquence of how 
often this task fails. Where review experiences felt 
positive, participants dwelled on gaining confidence in 
the implicit mental models behind codebases, getting 
feedback about the appropriateness of their effort, and 
being able to pass this knowledge on to others. 
 

Learning environment lens: 
Reputational costs will supersede 
“developmental” ideals; when code 
reviews focus on performance over 
learning, code writers feel pressured to 
hide their actual learning. 

 
One pattern underlying the themes in this stage was 
that code writers described many conversations 
ostensibly focused on feedback feeling like covert 
‘tests’ of their legitimacy in engineering. Code writers 
therefore could not experience these as opportunities 
to freely discuss and learn from mistakes.  
 
These experiences echo research on the negative 
consequences of a performance-oriented culture. In 
performance-oriented learning cultures, only “final” 
outputs are acceptable to others, and performance of 
external metrics such as grades is valued more than 
mastery of the problem area (Harackiewicz, 2000). 
Code writers’ worry around sounding like an engineer 
or not getting in trouble–particularly expressed by 
junior code writers–echoes research on metacognitive 
beliefs that some people are “born” good at x, where x 
might be math, code, or any other technical skill. Many 
STEM fields fall into the trap of believing that skills 
come from static, deterministic “brilliance,” including 
engineering (e.g., Cimpian & Leslie, 2017; Meyer, 
Cimpian & Leslie, 2015).  
 
These metacognitive beliefs are not only maintained by 
individuals, but also by environments. When formal 
feedback processes in an environment discourage 
sharing mistakes, work-in-progress, and difficulty, this 
can reinforce a “fixed” mindset and the implicit belief 
that learning activity should remain hidden. Under this 
environment code writers struggle to share “real” work 
in its totality, as it may create the impression that a 
learner was not “born brilliant” (see Canning et al., 
2020).  
 
Code writers’ learning persisted despite this challenge. 
Where scrutiny, evaluation and identity threat was 
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covert, the learning strategies of code writers also 
became covert. Code writers spoke of continuing to 
invest time and effort in collaborative understanding 
outside of untrusted formal processes. This learning 
was buried in personal notes, informal peer-to-peer 
support, and just-in-time conversations. When 
choosing what to disclose in formal feedback 
conversations, code writers emphasized the lack of 
space for explanations and conceptual decision points. 
 
The “invisible” byproduct of much of learning, mistakes 
are a key component to advancing understanding. 
When code review was positive, code writers spoke to 
the inclusion and valuing of these “invisible” processes. 
However, it was more frequent that formal processes 
washed away the “background noise” of mistakes, and 
enforced erasure of exploration. Code writers were 
uncertain where this learning should “live” in their 
collaborative workplace, and were left feeling that 
much of their most insight-generating effort went 
unshared.  
 
 
Stage 3. Environment Reinforces Learning 
Loss: tension between learning and 
performance leads to loneliness. 
 
Themes in the third stage were less tied to a specific 
task, and more defined by code writers’ reflections on 
the environmental barriers around them. Despite 
working in highly resourced environments, code 
writers went back to code work having experienced a 
dearth of contextual information and communal 
support. On the one hand, code writers were told that 
they were meant to find support in large formal 
processes for review, feedback, and implementation. 
But on the other hand, their navigation of these 
processes revealed profound context gaps in their 
organizations.  
 
This paradox crystallized the third constellation of 
themes: code writers themselves learned to reinforce 
the divide between valuable but secretive learning, and 
collaborative knowledge sharing. They made choices to 
cut their learning off from sharing, collaboration, and 
knowledge storage, such as not creating 
documentation, not commenting code, and not 
reaching out to colleagues.  
 

Code writers’ reflections on their environments 
surfaced barriers that might sound familiar to any 
worker at any large organization: time pressures, 
asynchronous communication, and inconsistent access 
to experts. Expressed in relationship to producing 
code, however, these became further clues about the 
implicit expectation that sharing the process was not a 
smart strategy. Code writers made pragmatic, and wry 
observations on how it was unstrategic to capture and 
share their own conceptual learning about the 
collaborative codebase, even when they knew it could 
help others. In these choices, code writers themselves 
recognized that they reinforced the learning norms of 
an environment that had already put them “in the dark” 
as learners.  
 

Learning environment lens: learning 
culture can be improved by rewarding 
“invisible” learning work that helps 
others, such as pair programming and 
documentation. Conversely, learning 
culture is damaged by social cues that 
disparage this work. 

 
Discouragement and devaluing of learning has real 
consequences on both wellbeing and productivity. 
Further research on performance-oriented 
environments that discourage mistake and process 
sharing has shown that these strategies can look highly 
productive in the short-term, but ultimately result in 
long-term stress on learners (Harackiewicz, et al., 
2008).  
 
Focusing on output and productivity is a necessary 
concern for any workplace. However, devaluing the 
process that builds sustainable work is fundamentally 
demotivating. Coupled with this devaluing, 
metacognitive beliefs such as tying identity to 
performance quality can lead to deeply negative 
dynamics, such as thriving when one’s performance 
matches the internal concept of a “performer,” but 
crumpling when mistakes arise in the normal course of 
learning, as mistakes are not believed to be part of 
intelligence, performance, or achievement (Elliot & 
Church, 1997).  
 
Signals for what metacognitive beliefs are expected 
can come from a day-to-day, working environment. 
Code writers spoke of using infrastructure as a clue 
about performance and learning expectations.  
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Code writers looked to artifacts left by other 
code writers, like documentation, pull request 
histories, and even the cadence of internal 
messaging, in trying to interpret what were 
acceptable ways to ask for help.  
 
Code writers pointed out contradictions between 
spoken ideals and observed behavior when questioning 
who the artifacts of code collaboration were truly 
supporting. And when this contradiction was felt by 
code writers, the implicit message won out. Code 
writers spoke of reading between the lines of missing 
documentation and colleague irritation, and these 
signals served as a “gut check” against the ways they 
were told to ask for help. This experience was 
particularly vivid for code writers who were junior in 
their careers.  
 
When to initiate shifts from solo work to group 
collaborations also felt uncertain. Many of the quotes 
on this topic emphasized the intensity of the fear that 
engineers felt in being “out of pace” with other 
workflows. For junior code writers in particular, this 

pressure felt deeply negative. Under this context of 
time pressure, it seems likely that code review was 
weighted with outsize pressure as a place to obtain 
help and subsequent discouragement when help was 
not centered, as a result of the lack of other 
opportunities for feedback.  
 
Quite simply, the result of this conflict 
between performance goals and learning goals 
was loneliness.  
 
Code writers reflected on moments they wished they 
could have talked to someone, frictions in experiencing 
“real” work versus performative work, and wishes to 
share the value of their unvalued learning. This 
loneliness was exacerbated by asynchronous 
communication and decision making. Code writers 
were often working backwards and across time and 
distance to infer the mental models behind 
collaborative code. For the code writers who were 
remote, the uneven access to artifacts created around 
code held even more power over their perceptions of 
the environment.   
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A Learning Debt Cycle 
 

 
Ramping up to new collaborative code, code writers 
navigated a complex landscape of competing needs 
while problem-solving. And despite formal structures 
of feedback and review, many of these code writers 
expressed not only a lack of resolution between these 
competing needs, but outright hostility to their 
learning needs.  
 
This experience can be described as a Learning Debt 
Cycle. Similar to “tech debt,” the common metaphor 
used to refer to a wide range of accumulating 
unresolved problems in software development (e.g. 
Kruchten et al., 2012; Fairbanks, 2020), I use the term 
Learning Debt to center the knowledge, personal 
development, and expert problem-solving of code 
writers, rather than the efficiency of production or 
systems. Learning is a dynamic, long-term process 
which knits together mistakes, reflection, and 
observation, and these are activities frequently missed 
or outright obscured by short-term, efficiency-
focused metrics.  
 
For these code writers, learning was a 
necessary foundational activity that was often 
discouraged and rendered invisible. 
 
 
 

The cycle of Learning Debt begins at a code writers’ 
earliest encounter with a collaborative codebase. 
During this ramp up, participants took in cues about 
organizational learning expectations from both the 
code infrastructure itself (frequency of pull requests, 
authorship paths, conflicts between “ideal” and “real” 
solutions in code) and from social conversations and 
social cues (e.g., availability of senior engineers for 
questions, observations of how peers are treated). This 
is commensurate with effects found in learning science 
on the role of initiating encounters (e.g., syllabi 
language in college classes) in setting normative 
expectations which long-term effects on learners’ 
expectations (Canning et al., 2021).  
 
As code writers moved from a code observation and 
translation into code creation, they invested in 
necessary active learning strategies (including 
“breaking” code, “tracking” bugs, and building a mental 
model) to initiate learning. During code review, 
however, these strategies were often met with 
conflicts from formal help-seeking processes, which 
introduced contradiction, reputational pressure, and 
hostility to learning. As code writers returned to their 
working environments, these high-value feedback 
moments reinforced a conflict between performance 
and learning goals, and code writers were left to store 
and share their conceptual learning outside of the 
formal processes.  
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CONCLUSIONS & RECOMMENDATIONS 

Collaborating on codebases is such a foundational 
activity that it is tempting for engineering teams to 
take this activity as a given. Teams might assume that 
“of course” code is commented, documentation is 
written, and knowledge is shared. But for the code 
writers I interviewed, real life differed significantly 
from the “best practices” described in engineering 
research. When I asked whether the described learning 
policies of their workplaces “worked as intended,” 
many code writers laughed before answering. Lack of 
documentation, frustration with invisible decisions, 
and lack of mentorship for junior teammates were 
frequently treated like rites of passage, perhaps even 
the inevitable consequence of high quality code work. 
As one code writer said: “Having to comment something 
is a red flag.” As another said, learning about new code 
“fails all the time.”  
 
When code writers felt their work demanded learning 
that was not recognized or rewarded, this meant that 
code review and other feedback situations were filled 
with psychological friction. Psychological friction is an 
umbrella term for the cognitive and emotional burden 
created when people feel the need to attend to 
situational cues which signal a threat to their 
belonging, reputation, or wellbeing. This friction 
discourages learning. Reducing psychological friction 
has improved learning experiences for early career 
knowledge workers in STEM and Law (e.g., Quintanilla 
et al., 2020; Murphy et al., 2007). To multiple 
participants in this study, it felt like workplaces had 
removed core pieces of learning. Code writers spoke 
wistfully of what coding in a learning culture had felt 
like during their education, or rare instances of pair 
programming: “Just being able to build off of others’ 
experiences. I miss it a lot.” 
 
When there are so many clear benefits, why is it so 
difficult to maintain a learning culture? Social and 
psychological cultures at work are created by 
reinforced behaviors. In this study, code writers’ 
“failures” to document or transfer knowledge were not 
driven by laziness or lack of care. Rather, code writers 
spoke to environmental pressures which pushed them 
to navigate complex tensions between performance 
and learning goals. And when making learning visible 
does not feel safe, performance culture wins. 

This challenge is not unique to collaborating on code. 
Despite a wide-ranging research literature on the 
importance of learning culture, giving feedback on 
processes over output, and developmental 
collaboration, schools and workplaces often fail to 
invest in developmental feedback, or recognize that 
maladaptive performance beliefs are emphasized in 
their environments (e.g., Marsick & Watkins, 2003; Bian 
et al., 2018). This is a gap on both sides, as social science 
also frequently fails to provide enough concrete 
information for workplaces to learn from, even for 
research on applied interventions (e.g., Premachandra 
& Lewis Jr, 2020).  
 
But academic research is not the only place to learn 
about learning. I interviewed people about learning in 
their real jobs, because I wanted to amplify their 
specific expertise and insight. The code writers in 
these interviews had many ideas about how to improve 
learning with code; they simply also felt discouraged 
and unsupported in translating this to their 
environment. Code writers had keen insight into their 
own productive, active problem-solving, but felt their 
environments, teams, and leaders failed to adequately 
understand this productivity.  
 
Multiple areas of engineering research echo these 
experiences, and can be drawn on to improve them. 
Engineering environments struggle to understand, 
capture, and measure productivity, but thinking 
broadly about multivariate data, developer satisfaction, 
wellbeing and stress reduction can move us closer to 
good measures (e.g., Forsgren, Storey et al., 2021). 
Parallels can even be drawn from areas such as 
resilience engineering, which has made metaphorically 
resonant arguments that systems must expect and be 
designed for non-ideal (aka, “real world”) conditions 
(e.g. Madni & Jackson, 2009). Human beings are not 
machines, but like machines, they experience cycles of 
stress and negative impacts from their environments, 
and functional systems need to build for sustainability 
and protection. 
 
It is important to note once again that the focus of this 
study was not on deeply harmful or hostile 
experiences. All of participants spoke of being happy 
where they worked. Nevertheless their learning debt 
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was real, cumulative, and striking. In some ways, it was 
surprising that even code writers in highly resourced 
environments struggled to find basic systems of social 
and knowledge work support. Focusing on code writers 
as learners brought to the surface the ways in which 
their environments failed to treat learning as a 
meaningful activity in code collaboration, and failed to 
design for it.  

 
 
 
 
 
 
 

 

 
 
 

RECOMMENDATIONS 
 

● Involve people in defining how their “success” is measured. Code writers across all career 
levels had strong feelings and insights about meaningful work, and frequently spoke to specific 
tasks they knew were valuable that their workplace missed.  
 

● Encourage more developmental feedback, separate from performance evaluation. Critiquing 
output is necessary in a production environment. However, code writers spoke to how their own 
personal development and support for others’ development was rarely given space or credit in 
review experiences. Leaders should make space for learning and development goals, and include 
knowledge sharing work as an important output. These efforts should be separate from 
performance evaluation. Collaborative learning requires psychological safety, and learners 
cannot experience the freedom of openly sharing mistakes and “in-draft” learning while 
defending their expertise and finished work. 
 

● Give technical teams more time for collaboration and documentation, and make 
documentation “count.” Simply put, documentation and other “mundane” tasks of knowledge 
sharing were the first sacrifice to time pressure. 
 

● Identify opportunities for celebrating and sharing collaborative support and examples of 
active problem-solving. Many code writers described a strong desire to share their problem-
solving, but lack of opportunity. Junior code writers also noted the outsize impact that senior 
teammates had on learning culture and the desire to “learn how to learn” from seeing real 
problem-solving in action.  
 

● Make the costs of learning debt visible. The costs of discouraging learning are borne most 
immediately by individuals. These effects are almost certainly compounded and felt more 
strongly by people with marginalized identities, who are systematically less supported at work. 
Yet learning debt’s cost can be invisible in short-term, conventional productivity metrics, 
particularly when these metrics fail to measure understanding and collaboration. For 
researchers, leaders, and practitioners working on driving change in these environments, it is 
important to think broadly about how to measure the health and long-term impact of a learning 
culture.  
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APPENDIX A: Initial Interview Script 
 
Interviews were semi-structured interviews: this means that while the initiating questions were used for all 
interviewees, participants were allowed to share tangents, observations, and delve into new topics as they arose 
naturally in the conversation. All interviewees were asked the initiating questions in this script as given below, but 
were asked follow-up questions and probed to elaborate (e.g., “tell me more about [what you just said]”/ “tell me 
how often you think [strategy] works”) in ways that were specific to their responses.  
 
[after “debugging” observation]: What did this task make you think about? What do you think was most valuable for 
your learning? 
Probe: any comments that came up during “debugging” observation task  
 
Give me a quick background on how you interact with or write code, in your day-to-day. 

How many days out of the week do you write code  
Are you collaborating with others 
Are you reviewing others’ code or managing collaborations 

 
1) Probe: Moments they had “ramped up” or onboarded to an unfamiliar codebase  
2) Probe: Moments they began to write their own decision into a collaborative codebase, and moments they 
solved a “bug” within a collaborative codebase  
 3) Probe: How code review and any other feedback points were experienced in this problem-solving process 

 
Tell me about how you review collaborative code. 

Tell me about how you learn here  
 Navigate between different files  
 Prototype and make decisions  
 Come back to code that you wrote in the past and understand it  
 
Tell me about onboarding into someone else’s code, or a codebase that is new to you. How do you learn here? 
 What does onboarding or ramping-up look like 
 When do you begin to contribute 
 How do you ask for help or feedback  
 
Tell me about how you get feedback on code and collaborate on code.  
 Tell me the general process at your organization for joint projects  
 Tell me more about code review  
 Tell me more about pair programming  
 Are there types of feedback you don’t get 
 Are there moments you wish you could have gotten feedback 
 
Tell me about where you feel like you get credit, or recognition for effort. 
  
Are there things about collaborating on code writing that you wish were easier?  
 
If you can think of one, tell me about a time that it was difficult to ramp somebody up into code that you had written / 
(if inapplicable) tell me about a time it was difficult for you to ramp up into somebody else’s code  
 Tell me about how you share context that’s important for code that you’ve written  
 Tell me about how you think other people on your team share context, or decisions about code they’ve written 
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Tell me how you share your decisions about code with other people 
 Tell me about how your organization does knowledge sharing 
 Tell me what you think is important for you to do in your job outside of writing code  
 Tell me about how often you do documentation/or not  
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APPENDIX B: Selected Respondent Quotes 
 
Stage 1. Active Learning 
 

“If you’re like ‘how does it work,’ you want to understand it in general, just use the actual app in contexts -- see 
the solution, play with that thing, as you play with that thing you’ll get more of a sense of why the code is the way 
it is.”  

 
“Spend 90% of my time talking and communicating and asking questions and 10% of my time writing code, that’s 
probably right. Asking questions, really listening to a teammate, understanding where he may be coming from. [...] 
especially as a junior dev, a big pain point is asking questions and having the time to get the people I need in a 
room to learn the problems.”  

 
“When people make errors [even just] typos that prevent code from running, it’s really important to see those 
being made. It is important in terms of making mistakes and being able to correct them, which is a large 
proportion of the learning process [….] The [mentors] I find the most helpful are the ones that have a stronger 
preference towards live coding, for the reasons I described, for seeing mistakes happen.[....] You often don’t get 
this.” 

 
“[people tell you] ‘here’s one thing to look for,’ but not necessarily what it looks like when the failure occurs. You’ll 
hear [senior teammates] saying “oh this typically happens,” but they don’t go into it, so the warning will totally fly 
over your head because you don’t have a place to store it. [...] Direct interaction with code makes it feel real, 
tangible, easy to remember.” 

 
“You go through a process of elimination, let’s hold these things constant, and then it becomes a trial and error 
thing, and that trial and error becomes exhausting….[laughs]. You don’t have a mental model anymore, [you] break 
the mental model to learn.” 

 
“I’d have this pattern of search where I go down a level and say ‘wait that’s not the right place to go’ and bounce 
back up; I had to know how to do it wrong in order to do it right.” 

 
Stage 2. Code Review 
 

“Do we get to talk about all that learning that happens before our code? No [laughs], no. I mean I think it would be 
seen as a waste of time.”  

 
“Code review is trial by fire–it sounds extreme. But you [just] get two million comments back to do it differently. 
You don’t get to talk about why you did it that way. We’re not necessarily good at the culture. [...] But I’m very 
much a tinkerer. I need to make mistakes.” 
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“Inside of [my] team it’s good because we all code review each other’s work and we do it well. We get buy-in 
before making major changes. But with other teams, other teams end up touching our codebase [...] they bring in 
models that are comfortable to them, and that becomes mismatch. Decisions get complicated. Our [process for 
feedback] doesn’t address those model conflicts. Usually the mismatch is better resolved [talking]. So really 
[laughs] maybe we avoid code review when there are real problems.”  

 
“I am watching in code review, like, ‘ok, that’s what they want me to sound like.’ Of course I learn but they don’t 
really explain… [it’s] just like being checked up on, so I watch to not get in trouble.”  

 
“People don’t want to talk about your choices. Or what you learned, no. People just joke about how much they 
don’t want to talk. You don’t want to be annoying, you don’t want to be like ‘that guy.’ Code review isn’t a place to 
talk about everything around the code, there isn’t a place to talk.”  

 
“[for getting help or feedback] We basically have code review. It’s the only time for feedback. You know, it’s the 
only time you get to actually talk to somebody. And then it’s not really the reasons you did things. It’s all just, it’s 
very transactional. Making sure you don’t look like an idiot is important.”  

 
“I guess the thing to think about is that we were always on deadline. We have to do this thing in 48 hours, but 
those [code review] conversations [...] the scope just expands. Exponentially. It got kind of frustrating. When 
someone else gets involved [in code review], there’s a burden and pitfalls. [...] So we end up trying to not involve 
each other and avoid decisions coming up in code review.” 

 
“We review big code changes but…The main people who are talking are typically the most senior...they throw out 
terms, say high level things. I see these two [junior team members] who don’t say anything but you know when 
you can look at someone and they’re in silence and they’re not looking engaged? Yeah. I wish it could be like, 
maybe all of us who are actually figuring it out could get together and talk, but no it’s like, some senior person 
reviewing and telling them things are wrong. But they don’t really see why you thought you had to do it that way.”  

 
“But if I was new and trying to work out what this [code] did - I think code in general only makes sense once you 
understand the context of the code - If I was onboarding someone I’d be demoing it. You have to prepare them: 
there’s a lot of code here and a lot of it’s good and a lot of it’s bad but you want to prepare them. You want to say 
here are the hot spots where we’re putting effort into, and also the areas that we’re putting effort into might be 
messy because of that. People get messed up, people get bad feedback, hate reviews because they don’t 
understand their effort isn’t in the right place. But sometimes I’m like, no one told them.”  

 
“There are situations where folks are modifying code that I’ve written because something else isn’t working, so 
they’re trying to play around […]. I want to help. I would love to get there earlier in the process but [the way it 
works now] a month goes by before I see them. Maybe I get pulled into a code review, but that’s not really when I 
would’ve helped.”  
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“My background is not traditional for computer science. It is tough. The hardest parts of the workflow…it’s all 
tough. I can be fairly productive once I figure out the codebase, but figuring it out, it takes me a long time to get 
there and it feels like you’re not, you know you’re working really hard but no one sees it.”  

 
Stage 3. Environment Reinforces Learning Loss 
 

“I guess documentation is the way I’d ‘help’ other people but they treat it like a time sink. I end up feeling like I 
have too much to say so I don’t say anything? Like other engineers think you’re not really supposed to say too 
much and clutter up anywhere so I think if I figure out something I think is neat like I solve it, it just stays in my 
head like maybe I write it down for myself. So it doesn’t help anyone.”  

 
“If you work with a big company they’ll expect you to have documentation - [but] that’s not the same 
documentation as the internal engineer-to-engineer documentation that’s needed. I waste a lot of time doing the 
documentation they want to see. I know it’s not really teaching anyone.” 

 
“Ideally we were supposed to comment code….reality? Less than 10% of our code was actually well commented.”  

 
“We have no documentation of our code, it’s very primitive. We haven’t been doing too many notes in code unless 
it’s a ‘to do.’ [...] People are better at compromising in person, [but] that gets lost. I have had the same 
conversation so many times.”  

 
“I met [the original authors of code I was working on] in the beginning of the project but that was it […] I guess I 
was supposed to submit a pull request if I wanted to but I thought they would be like, ‘who are you’ […] so my 
experience was trying to sift through all this stuff on my own. I didn’t want to bother people. It’s a lot of stuff like 
that, like I’m checking for the names of people [in github, in Slack]... [people] I met for one hour in the beginning 
of the project and I’m seeing they don’t actually talk to each other so I shouldn’t [reach out to them]. But I don’t 
really want to bother them again. I don’t know if I’m going slower than they’d expect. So there’s a big difference 
between what people say and what they want you to do, yeah.”  

 
“As a more junior dev […] I want to become more consistent with the person who’s more senior to me, I want to 
figure out why they’ve developed those practices. But they never have time for us. You are doing this figuring it 
out from what you can see [in code]” 

 

“We tried [to advocate for more pair programming] and got a lot of pushback.” 

 

“The best way for someone to really understand your code is to sit down with them, go through examples [....] 
looking at this code, trying to figure out at what point was this project talking to what other project [...] reaching 
out to people in Slack [...] building an understanding of how these pieces fit together. That’s the best. [points 
emphatically] the best way. That barely ever happens. Because the developers probably aren’t there. People don’t 
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have time to talk to you. So then you go to documentation systems. [...] It’s strange but, documentation can tell 
you how people don’t have time.”  

 
“At my old company I was the one who provided the context, I enjoy and have a bit of skill at keeping the whole 
web in my head and saying oh, that connects here, that connects here. [...] I’m good at that. But I don’t get to do it 
here. I kind of realized the career cost to acting that way. Because we really intensive, time intensive, I never get 
to document all that knowledge.”  

 
“It’s a badge of honor to work twenty hours of a day [...]. Go go go. I was the single point of knowledge for context 
on this code. [...] Because we were really focused on churning and iterating I never got to document it. I know we 
should’ve. If we hire more engineers we’re not going to be able to speed them up because there’s not this 
repository of knowledge. One person can’t keep it all in their head.” 

 
“[Onboarding into the collaborative codebase is] pretty draining and frustrating. Kind of full of despair. You have 
to be very good at documenting your own progress. No one will do it [for you] or help. [...] I like exploration but 
knowing there’s the time pressure, I personally don’t like actively asking questions.” 

 
“Most of the time, there’s no descriptive message any time somebody changes things [in our shared code]. Or the 
revision is too big. People aren’t good at adding reasoning or key insights because it takes time. And no, it isn’t 
valued. So no you don’t get all the key insights.” 

 
“The easiest, simplest way [to understand someone else’s code] is just to talk to them. That barely ever happens 
because the developers aren’t there and people don’t have time to talk to you.”   

 
“I am always trying to remind myself I love coding. I didn’t know it would feel like this to actually have this job. 
Super alone.” 

 
“The problem with us is that we are all working remotely, and we meet only [once in a while]. During those [few] 
days ...we set all the tasks for the whole week, month. So you’re solving something that didn’t come up then, you’re 
alone.” 

 
“I’m horrible about commenting. Yeah, [even though] comments are really the only way to leave context for 
yourself in the future. Time sinks aren’t a priority. [laughs] I guess learning is a time sink.” 

 
“I miss writing code with other people. We are collaborative in other ways but not with code. [I miss]  having other 
people to bounce ideas off of, just being able to build off of others’ experiences. I miss it a lot.”  
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“[when I was a student] every day I was pair programming. It was hard [...] but you would literally learn from other 
people’s experiences, it’s very productive. Or you’d get to really learn something from explaining to others. No pair 
programming in the real world. No explaining.” 

 
“We tend to believe code should be self-explanatory, everything that’s not self-explanatory, you add a comment. 
Having to comment something is a red flag, an indication of messing up.”  

 
“And right now [if] you look at where I left off [writing code], it does need a bunch more documentation that’s 
giving me a sense of that’s the rationale and why I built it. [...] I can tell you if I was onboarding someone [into code 
I wrote], I would try to find the next code task and kind of walk them through it. Well that’s ideal. And it’s not 
there. No one cares if you do it so you know you just, you don’t benefit.”  

 
“I think generally the conflict is [...] a lot of the work we need to be doing is behind the scenes, needing to make 
things clearer [...] that can be kind of difficult  because we have to do that, but we’re [told to prioritize] things we 
can show physically. Things need to count from an outsider’s perspective.” 

 
“We have pretty good team dynamics. Our project manager’s like, even if [working on code understanding is] not 
something shiny, in the long-run that will pay off, so do it.” 

 
“Even writing a comment is context switching for me, takes me out of the flow. But then you’re on the other side 
and it’s all gold, It’s gold because -- all this stuff, all the comments and the people helping, it’s all to help you 
understand the code. If you can figure out how to traverse [comments and documentation] really well, that can 
help you in a big way. That’s really hard, it takes time, it takes discipline.”  

 
“If I were just teaching someone? Showing people multiple examples [of why code works] – that would be great. I 
would take that chance if I were teaching but I can’t here. If I’m just getting someone up to speed at work though, I 
can’t. [Onboarding someone to collaborative code] fails all the time...someone just shows you a piece of code and 
then you try it on your own and it’s totally mysterious.” 

 
“From my standpoint I want more access to pair programming. Our company only uses it if you’re blocked. Feels 
like you have to get into trouble to talk to people. But I’m actually really good at helping people when we pair 
program.” 

 
“The hardest part [of solving this bug] was the lack of documentation….then it’s like, you know, I get the sense no 
one cares. Even if the framework is beautiful, no one cares about me now, trying to do stuff with it.”  
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APPENDIX C: Trust Building & psychological safety after the Active Work Session 
 
An unexpected outcome of the active work sessions was that participants began to use noticeably more casual, 
familiar, and warm language after the “bug solving” task. While this is not unexpected (as you spend time with 
participants and develop a conversation, the conversation often becomes more comfortable), I believe it’s worth 
calling out because it highlighted a specific theme of trust, and how trusting conversations elicit a different type of 
disclosure. Therefore, in a follow-up qualitative analysis, I examined the immediate five minutes after the active 
work session. 
 
In ten of the interviews, participants initially referred to themselves by their official role description and title. After 
the bug session, nine of these participants began to describe themselves with different, more idiosyncratic language. 
Many of the participants began our interviews discussing explicit feedback structures and used language of “should” 
and responsibility (e.g., “for code review you need to make sure you have learned the style”, “we’re supposed to 
make sure we comment”...). After the active work sessions, in which the participants were able to narrate their live 
problem-solving, much more humor emerged. Participants spoke more openly about “what works” and “what 
doesn’t work” and their own learning constraints and desires while writing code (e.g., “even the best people can only 
keep so much in their head,” “Ninety percent of what I realized I want to discuss is really more simple stuff than all 
the stuff we have meetings about”).  
 
This emergent experience prompted me to think about how interactions between methods can strengthen insight. I 
believe that our interviews on learning in code writing were more authentic, engaged, and felt safer, because I had 
held space with my participants in the debugging sessions without attempting to provide answers or judge the 
quality of their code or their problem-solving.  
 
 


